
Eur. Phys. J. B 2, 413–449 (1998) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
Springer-Verlag 1998

Effects of a finite screening length on the absorption
of electromagnetic waves

R. Balian1,a and J.-J. Niez2
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Abstract. When an electromagnetic wave impinges on a semiconductor or ionic conductor having a size-
able screening length, it induces diffusion currents in addition to the ohmic currents, which affects the
propagation in heterostructures or composite media involving such materials. In the simple geometries and
in the low frequency regime studied here, the absorption may be either enhanced or reduced, depending on
the parameters, and effects precluded for metals are predicted: extinction of the reflection by a plane wall,
complete absorption of an electric multipolar wave by a sphere, disappearance of the scattering by a small
sphere, vanishing of both reflection and transmission coefficients for a slab. If the screening length is larger
than the skin depth, a slab with intermediate thickness may have a large transparency, and a thick piece
of material is expected to be cooled down by the wave near the interface and overheated deeper inside.

PACS. 41.20.Jb Electromagnetic wave propagation; radiowave propagation – 72.20.-i Conductivity
phenomena in semiconductors and insulators

1 Introduction

The propagation of electromagnetic waves in composite
media or in heterostructures is currently described by
characterizing each medium by a single wavenumber k
which depends on the angular frequency ω. In an insulator,
k is the square root of ω2µ0ε, where ε is the dielectric con-
stant. In a metal, k is complex with k2 = ω2µ0ε+ iωµ0σ,
where σ is the conductivity. The field as well as the current
J of the free charge carriers penetrate the conductor over
ranges of the order of the skin depth (Im k)−1. However,
in permanent regimes, the bulk charge density ρ of these
carriers vanishes as a consequence of Ohm’s law J = σE,
of the charge conservation law

∂ρ

∂t
+ divJ = 0, (1.1)

and of the Gauss equation

div εE = ρ, (1.2)

which altogether provide within the material
(ε∂/∂t+ σ) ρ = 0. An oscillating surface charge density
is concentrated at the interface.

This behaviour originates from the fact that, for met-
als, the screening length has an atomic order of magnitude.
In semiconductors as well as in ionic conductors, colloids
or electrolytes, the screening length λ is sizeable, and the
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charge carriers must spread over ranges of order λ. In a
static electric field, the charge density satisfies λ2∇ρ = εE,
hence

(
λ2∇2 − 1

)
ρ = 0; it thus decreases exponentially as

e−z/λ with the distance z from the interface. Our purpose
is to explore the consequences of such a spreading on the
distribution of fields and hence on the propagation of e.m.
waves, in composite media containing conductors with a
finite screening length. We shall consider below only ge-
ometries where a plane e.m. wave issued from a dielec-
tric material interacts with a piece of semiconductor or of
ionic conductor having a simple shape. The Debye length
is also sizeable in plasmas, but the phenomena that we
shall study would then refer to reflection and refraction of
an e.m. wave on an interface between a motionless colli-
sional plasma and a dielectric medium, a situation which
seems experimentally out of reach. The semiconductor or
ionic conductor will be described by the simplest model
that accounts both for conduction and for screening over
a finite rangeλ.

More precisely, we replace Ohm’s law J = σE, which
represents the response of a metal for which λ ' 0, by the
equation

J = σ

(
E−

λ2

ε
∇ρ

)
= σE−D∇ρ, (1.3)

expected to hold approximately for the materials that we
consider, provided that the frequencies are not too high
(ωτ � 1, where τ is the delay between collisions). Equa-
tion (1.3) has the required limits, for λ = 0 (metal), for
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ρ = 0 (conduction in a neutral bulk piece of matter), and
for J = 0 (electrostatic screening). Its two contributions
to the current describe on the one hand the drift of the
carriers induced by the electric force applied to them, and
on the other hand the diffusion which tends to restore
uniformity of the charge density. Since the carriers, with
charge q, behave in semiconductors and in ionic conduc-
tors as a classical gas, the diffusion coefficient D ≡ σλ2/ε
satisfies Einstein’s relation D = σkBT/qρ; equivalently λ
satisfies the Debye–Hückel equation λ2 = εkBT/qρ. We
shall assume the temperature to remain uniform.

The constitutive equation (1.3) can be justified
through two different means [1]. On the one hand,
the semi-phenomenologic macroscopic approach of non-
equilibrium thermodynamics relies on the proportionality,
in isothermal regimes, of the current J to the electromo-
tive force, that is, to the gradient of the electrochemical
potential µ, provided the material is in the vicinity of equi-
librium. The two terms of (1.3) then arise from the two
contributions to ∇µ, issued respectively from the exter-
nal forces and from the non-homogeneity of the density of
carriers. The relation between the diffusion coefficient D
and the screening length λ expresses simply the Poisson
equation at electrostatic equilibrium, with J = 0 in (1.3).
On the other hand, the microscopic approach of kinetic
theory shows that (1.3) results from the solution of the
Boltzmann equation in the local equilibrium regime; more-
over it yields microscopic expressions for the parameters σ
and λ. This approach also exhibits the validity domain of
(1.3): the mean free path should be smaller than the wave-
lengths involved, and the delay between collisions should
satisfy ωτ � 1. This makes more precise the condition of
“vicinity of equilibrium” required in the thermodynamic
approach.

In the language of effective permittivity, the usual con-
ductivity equation J = σE gives rise to a frequency de-
pendence of εeff = ε+ iσω−1 through the contribution of
free carriers. More precisely, if E (r) and

D (r) ≡ εE (r) + iω−1J (r) (1.4)

denote the ω-components of the electric and displacement
fields, respectively, they then satisfy the local but delayed
relation D (r) = εeffE (r). Turning to the transport equa-
tion (1.3), the dependence of D (r) on E (r) (at a given
frequency) becomes moreover non-local. Indeed, elimina-
tion of J and ρ between (1.3, 1.4) and the conservation
equation divJ = iωρ leads to the relation (7.2) below be-
tween D and E. For an infinite homogeneous medium, it is
convenient to perform a spatial Fourier transform, where
we denote by q the conjugate of r, which simplifies (7.2)
into

D (q) =

(
ε+

iσ

ω

)
E (q) + q

σ2λ2

ω2ε+ iωσλ2q2
[q ·E (q)] .

(1.5)

This introduces a (q, ω)-dependent effective permittivity
tensor εeff (q, ω) , which exhibits a non-local character in
its longitudinal component. Our problem thus enters the

general framework of spatial dispersion [2]. Unfortunately,
since our aim is to explore wave propagation near inter-
faces, we have to face boundary effects, which prevents
us from using spatial Fourier transforms. The concept of
effective permittivity thus becomes useless here since the
system is not only non-local, but also non-homogeneous.

In order to deal, in the r-space, with local equations
only, we shall not try to eliminate J and ρ as we did to
obtain (1.5). Instead, we shall keep ρ (r) as one of our
basic fields, together with the electric field E (r) . Using
this procedure, we shall see in Section 2 that the consti-
tutive equation (1.3), together with Maxwell’s equations,
give rise at a given frequency to two complex character-
istic lengths in the material. Beside the wavelength k−1,
given by k2 = ω2µ0ε+ iωµ0σ as in a metal, we shall find
a dynamical screening length β−1, of the same order of
magnitude as λ, which governs the space variations of the
charge density. The distribution of e.m. fields will in gen-
eral depend on both lengths k−1 and β−1. For a bulk ma-
terial, these two complex lengths are associated with two
poles in the (q, ω) Fourier transform of the propagator for
E, namely q2 = k2 = ω2µ0ε + iωµ0σ for its transverse
components and q2 = −β2 = −λ−2

(
1− iωεσ−1

)
for its

longitudinal component. The first pole also occurs in D,
in H, and in the transverse part of J, while the second
pole occurs in ρ and in the longitudinal part of J.

Let us now turn to the boundary conditions at the
interfaces. At the surface of a metal, the normal compo-
nent J⊥ of the electric current does not vanish; according
to (1.1), it is equal to the time-derivative of the surface
charge. When λ is finite, the material cannot sustain any
infinite charge density so that there is no surface charge.
The conservation equation (1.1) then implies that J⊥ van-
ishes at the interfaces. This property will appear as a
boundary condition, supplementing the usual boundary
conditions for the fields. Actually the partial differential
equations for the fields, the currents and the charges are
here of higher order than for metals, due to the occurrence
of the gradient term in (1.3), and the additional boundary
condition J⊥ = 0 is needed to ensure the unicity of their
solution. This aspect of our problem, the so-called “addi-
tional boundary conditions”, is discussed in Section 4.2 of
reference [2]. It is related both to the occurrence of two
poles instead of a single one in the propagators, and to the
introduction of ρ as an additional field in the set of basic
equations. The same problem has also been encountered
by several authors [3–6] who dealt with spheres having a
nonlocal dielectric constant or a metallic behaviour in the
optical regime.

After having analyzed the general equations which
govern the behaviour of the e.m. fields in our two-
component system as well as the energy exchanges be-
tween field and matter (Sect. 2), we study the absorption
of e.m. waves by a semiconductor or an ionic conductor
in the simplest geometries. We begin with a thick plane
wall, which leads to the simplest equations (Sect. 3); we
discuss these equations in some detail (Sect. 4 and Ap-
pendix A) so as to explore the new features brought in
by the finiteness of the screening length, which depending
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on the circumstances may either enhance or reduce the
absorption of e.m. waves. We then exhibit similar effects
for a spherical inclusion in a dielectric medium (Sect. 5).
Finally, we study the transmission through a semiconduct-
ing plane slab embedded in a dielectric and the reflection
from it (Sect. 6). The Section 5 devoted to a sphere can
be read independently.

The calculations in Sections 3 to 6 are rather te-
dious. We therefore resume their results in the conclusion
(Sect. 7). The reader only interested in the experimen-
tal implications of the finiteness of the screening length
may thus directly jump to Section 7, where the main ex-
pected phenomena are described and the main equations
are listed.

2 General properties

2.1 Basic equations

As indicated in the introduction, we consider a system
made of two materials, an insulator characterized by the
dielectric constant εi, and a semiconductor or an elec-
trolyte characterized by the dielectric constant ε, the con-
ductivity σ and the electrostatic screening length λ. Elec-
tromagnetic waves with angular frequency ω are issued
from the region of the insulator. The time-dependence of
the electric field is expressed by:

E(r, t) = Re
[
E(r) e−iωt

]
, (2.1)

and likewise for the magnetic field H, the charge density
ρ and the current density J. In the insulator, the fields are
governed by Maxwell’s equations:

iωµ0H(r)− curl E(r) = 0,

iωεiE(r) + curl H(r) = 0. (2.2)

In the conductor, these equations, namely

iωµ0H(r)− curl E(r) = 0,

iωεE(r) + curl H(r) = J(r) , (2.3)

are supplemented by the response equation

J(r) = σ

[
E(r)−

λ2

ε
∇ρ (r)

]
, (2.4)

and the conservation equation

iωρ (r)− div J(r) = 0, (2.5)

which implies:

ε div E(r) = ρ (r) . (2.6)

Finally, we have to write the continuity across the inter-
faces of the tangential components Hq,Eq of the magnetic
and electric fields, and the vanishing of the normal compo-
nent J⊥ of the current density. These boundary conditions

also imply the continuity of H⊥ and of D⊥, with D = εiE
in the insulator and D = εE+iω−1J in the semiconductor.

In the insulator, the solution of (2.2) is a superposition
of transverse plane waves, with wavevectors κ satisfying

κ =
√
ω2µ0εi. (2.7)

In the semiconductor, (2.3) and (2.4) imply(
∇2 + k2

)
H(r) = 0, div H(r) = 0, (2.8)

where the complex wavenumber k is given by:

k ≡
√
ω2µ0ε+ iωµ0σ, Re k > 0. (2.9)

The magnetic field H(r) is thus, as usual, a superposition
of transverse plane waves, with wavevectors k of length
(2.9). Another simple consequence of (2.4, 2.5, 2.6) is the
equation for the charge density ρ:(

∇2 − β2
)
ρ(r) = 0, (2.10)

β ≡
1

λ

√
1−

iωε

σ
, Re β > 0. (2.11)

The quantity β−1 is a (complex) dynamical screening
length, reducing to λ in the static limit ω = 0. It char-
acterizes the range of variations for ρ, which is a linear
combination of exponentials e−β·r. The electric field E
and the current density J drawn from (2.3, 2.4),

E(r) = Ep(r) + Es(r) , (2.12)

Ep(r) =
1

σ − iωε
curl H(r) ,

Es(r) =
1

εβ2
∇ρ(r) , (2.13)

J(r) = Jp(r) + Js(r) , (2.14)

Jp(r) = σEp(r) , Js(r) = iωε Es(r) , (2.15)

appear as a sum of two terms, associated with propaga-
tion and with screening, respectively. The characteristic
length for the propagative terms Ep and Jp is k−1, and
Ep has the usual form of a superposition of transverse
plane waves. However, while for a single plane wave Ep

and Jp are perpendicular to both the wavevector k and
the magnetic field H, the screening terms Es and Js have a
range β−1 and are longitudinal: for ρ ∝ e−β·r, the vectors
Es and Js lie parallel to β. The time-dependences of the
propagative and screening terms also exhibit a difference:
as shown by (2.15) Jp oscillates in phase with Ep whereas
Js is in quadrature with Es.

For each geometry considered below, we shall use the
following procedure to determine the e.m. fields. (i) Write
E and H in the insulator as the sum of an incident
plane wave with the wavevector κ and of waves (with the
same wavenumber κ) reflected or scattered by the semi-
conductor or transmitted through it. The reflection and
transmission coefficients, or the scattering amplitudes, are
taken as parameters to be found later on. (ii) Write H in
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the semiconductor as the solution of (2.8, 2.9). It is en-
tirely determined in terms of H outside, owing to the
boundary condition, that is, the continuity of Hq across
the interfaces. (iii) Write ρ as a solution of (2.10, 2.11);
it involves an unknown amplitude for each possible direc-
tion of β. (iv) Express E and J in the semiconductor by
means of (2.12–2.15), and determine the amplitudes in ρ
by imposing that the normal component of J at the in-
terfaces vanishes. (v) Finally, use the boundary condition
on E, namely the continuity across the interfaces of the
tangential component of E, to determine the parameters
introduced in the step (i).

In the limit λ → 0 of a metal, β becomes large. The
charge density ρ (r) , concentrated in a thin shell of thick-
ness β−1 at the interfaces, tends to a distribution of sur-
face charges. If we denote by z the distance to the inter-
face, we have ρ (r) ∝ βe−βz θ (z) → δ (z) . Although the
normal component of ∇ρ is large, Es and Js remain finite
near the interface, due to the denominator β2 in (2.13).
The normal component Js

⊥, in particular, varies from 0 for
z � β−1 to −Jp

⊥ for z = 0 (so that J⊥ vanishes there);
this creates a discontinuity in the limit λ→ 0. However, in
the sense of distributions, Es and Js vanish, even at z = 0;
when smoothed over ranges larger than β−1, they are com-
pletely washed out. The standard model for a metal with
J⊥ 6= 0 is thereby recovered, but not trivially.

The splitting of E and J into two contributions, which
partly decouples the equations, would also be a valu-
able tool for theoretical treatments of propagation of e.m.
waves in random composite media. The use in this prob-
lem of the replica trick [7] or of supersymmetric methods
[8], for instance, requires to treat all materials on the same
footing, with a unique set of equations involving random
parameters, non-singular and valid everywhere including
the interfaces. This is readily done by extending ρ,Es and
Js to the dielectric, where the equations force them to
vanish.

2.2 Energy exchanges

In a stationary regime, the energy density of the field in
the semiconductor or ionic conductor, averaged on time
over a period 2π/ω by means of (2.1), and including the
polarization energy, is:

1

2

〈
ε [E(r, t)]

2
+ µ0 [H(r, t)]

2
〉

=
1

4
Re [ε |E(r)|2

+ µ0 |H(r)|2], (2.16)

and likewise with εi in the dielectric. Accordingly, the av-
erage energy flux of the field is characterized by the Poynt-
ing vector

N(r) =
1

2
Re

[
E(r)×H(r)

∗]
, (2.17)

and the power per unit volume yielded to matter by the
field, averaged over time, is at each point:

w(r) =
1

2
Re

[
E(r) · J(r)∗

]
= −div N(r) . (2.18)

In our model for the semiconductor, the Poynting vec-
tor comes out from (2.12, 2.13) as the sum of two terms,
associated with propagation and with screening, respec-
tively:

N(r) = Np(r) + Ns(r) , (2.19)

Np(r) =
1

2
Re

[
Ep(r)×H(r)

∗]
=

1

2
Re

[
1

σ − iωε
curl H(r)×H(r)∗

]
, (2.20)

Ns(r) =
1

2
Re

[
Es(r) ×H(r)∗

]
=

1

2
Re

[
1

εβ2
∇ρ(r)×H(r)

∗
]
. (2.21)

The propagative term Np is as usual directed along the
wavevector k. The screening term Ns is perpendicular to
both the magnetic field and the direction β of the gradient
of the screening charge.

Within the same model, the local dissipation rate
(2.18) can be written, using (2.4) and (2.5), as:

w (r) =
1

2σ
|J(r)|2 +

λ2

2ε
divRe

[
ρ (r) J(r)∗

]
. (2.22)

While the first term, which has a usual form, is obvi-
ously positive at each point, the second term may have
either sign. Moreover its positive and negative contribu-
tions cancel each other when we integrate w (r) over the
whole material, since J⊥ vanishes at the interfaces. The
overall dissipation rate thus reduces to

W =
1

2σ

∫
d3r |J(r)|2 . (2.23)

An alternative, more detailed form of the local dissi-
pation rate (2.18) is associated with the two contributions
(2.19–2.21) to the Poynting vector. The propagative con-
tribution to w (r) keeps the usual form:

wp(r) = −div Np(r) =
1

2
Re

[
Ep(r) · Jp(r)

∗]
=

σ

2 (σ2 + ω2ε2)
|curl H(r)|2 . (2.24)

The contribution associated with screening is found from
(2.13, 2.15) as:

ws (r) = −div Ns(r)

=
1

2
Re

[
Ep(r) · Js(r)∗ + Es(r) · Jp(r)∗

]
=

1

2
Re

[
1

εβ2
∇ρ (r) · curl H(r)

∗
]

=
1

2
divRe

[
1

εβ2
ρ (r) curl H (r)∗

]
. (2.25)

The term 1
2Re

[
Es(r) · Js(r)

∗]
from (2.18) vanishes, due

to the phase shift π
2 between Es and Js. The total dis-

sipation rate W = W p + W s, the integral of wp + ws
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over the whole material, is checked to be the flux of the
Poynting vector which enters through the interfaces; the
contributionW s is also the flux of 1

2Re
[
ε−1β−2ρ curl H∗

]
according to (2.25) or that of 1

2Re
[
iωβ−2ρE∗

]
, where we

made use of (2.3) and J⊥ = 0. Nothing forces it to be
positive, contrary to W p, the incoming flux of Np, which
is obviously positive since it is the integral of (2.24).

The occurrence of two types of contributions to the
dissipation rate can be traced back to a qualitative mi-
croscopic analysis of the phenomena. In a region of space
where ρ = 0, the electric force qEp exerted on a carrier
with charge q gives it an acceleration between two succes-
sive collisions on the inhomogeneities of the medium (im-
purities, phonons, solvent molecules in a ionic conductor,
etc.); at the next collision, the distribution of velocities
tends to recover its isotropy. These two combined types
of processes result in a flux Jp/q of carriers in the same
direction as the force qEp : Ohm’s law. Energy is yielded
by the field to the carriers through the successive accel-
erations, and hence to the medium through the collisions:
the Joule effect (2.24). However, when the density ρ is not
uniform, an additional contribution Js/q to the particle
flux is generated by a diffusion process, whatever the field
E; it arises from the drift term in the Boltzmann equation
and is directed along the gradient∇ρ/q of the particle den-
sity. In case the angle between the instantaneous average
flow Js (r, t) /q and the force qEp (r, t) exerted by the field
exceeds π

2 , this force slows down the carriers between two
collisions, a property which can hold after time-averaging
over a period. The average power 1

2Re [Ep · Js∗] yielded
by the field to the carriers can then be negative. Thus, de-
pending on the direction of the diffusion current Js with
respect to the field Ep at the considered point, the contri-
bution 1

2Re [Ep · Js∗] to ws corresponds locally either to
a cooling or an overheating of matter by the field, added
to the Joule heating.

Finally, the second term 1
2Re [Es · Jp∗] of (2.25) is as-

sociated with the field Es which is created by the diffusion
current due to the motion of the screening charges. The
main flow Jp of carriers may, here again, be heated or
cooled, depending on its direction, by this additional field
Es which lies along ∇ρ.

Such a local cooling or overheating of carriers is known
in another context, that of the Landau damping in the col-
lisionless regime [9]. However this phenomenon is found
here in the opposite limit ωτ � 1. In order to discuss
the possibility of observing it in practice, our model needs
to be completed. Actually, apart from the above energy
exchanges between the field and the carriers, and apart
from the local thermalization associated with the scatter-
ing of the carriers in the medium, a realistic description
should include the other mechanisms of heat transfer that
we disregarded, in particular the heat conduction. In the
local equilibrium regime which we considered, we should
thus add to (1.3) a thermoelectric term proportional to
the temperature gradient, express the total heat flux in
terms of the gradients of T and µ, and solve the resulting
coupled equations. Moreover we should also take into ac-
count the temperature dependence of the screening length,

which arises mainly through the variation of the density of
charge carriers. In this paper, and in particular in Sections
4.1 and 4.3, we shall restrict ourselves to the primary phe-
nomenon, the energy transfer between field and carriers,
keeping aside the subsequent heat transfers.

3 Plane wall: generalities

3.1 Influence of incidence and polarization

We consider here and in Section 4 a single plane inter-
face which separates a dielectric material in the region
z < 0 and a semiconductor or ionic conductor in the re-
gion z > 0. We wish to study the absorption and the
reflection of a plane electromagnetic incident wave with
wavevector κ = (κx, 0, κz) . Translational invariance im-
plies that the x-component of all the wavevectors is the
same, namely κx, so that the wavevectors (2.9) and (2.11)
in the semiconductor have the form k = (κx, 0, kz) and
β = (−iκx, 0, βz) . Their z-components are accordingly
given by:

κz =
√
ω2µ0εi − κ2

x =
√
κ2 − κ2

x, κz > 0, (3.1)

kz =
√
ω2µ0ε+ iωµ0σ − κ2

x

=
√
k2 − κ2

x, Re kz > 0, (3.2)

βz =
1

λ

√
1−

iωε

σ
+ κ2

xλ
2

=
√
β2 + κ2

x, Re βz > 0, (3.3)

while the reflected wave has the wavevector (κx, 0,−κz) .
Consider first a TE wave, polarized in a direction par-

allel to the interface, i.e., such that the incident electric
field has only the component Ey . It is easy to check from
Section 2.1 that this property also holds within the con-
ductor for E, and hence for J; these quantities have only
one component Ey or Jy, which depends on x and z. Since
then div J = 0, no free charges appear; in particular, for
a metal with λ = 0, there is no surface charge. Nothing
is therefore changed in the distribution of fields and cur-
rents when λ becomes finite. This can be checked from the
equations (2.2–2.15), in which we have ρ = 0 everywhere.
Thus E(r) and J(r) reduce to their propagative contribu-
tions Ep(r) and Jp(r) , and the material behaves exactly
as a metal with perfect screening which would have the
same dielectric constant and the same conductivity.

We shall thus focus below on a TM wave with an
oblique incidence (κx 6= 0) . The electric field lies in the
incidence plane; for perfect screening (λ = 0) , the normal
components of D and of J are discontinuous and a surface
charge is generated. For λ 6= 0, this charge is spread off,
and we expect the e.m. field to be modified accordingly.

3.2 Distribution of fields and currents for TM waves

Since all the quantities that we are considering here de-
pend on time and on the coordinate x only through
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the factors e±i(κxx−ωt), and since they do not depend on
y, we can replace the convention (2.1) by

E(r, t) = Re
[
E (z) ei(κxx−ωt)

]
, (3.4)

and likewise for H, J and ρ. In the insulating region z < 0,
the non-vanishing components of the field have according
to (2.2) the form:

Hy =
κE0

ωµ0

(
eiκzz −Re−iκzz

)
, (3.5)

Ex =
κz

κ
E0

(
eiκzz +Re−iκzz

)
,

Ez = −
ωµ0κx

κ2
Hy , (3.6)

where κz is defined by (3.1) and κ by (2.7). The reflection
coefficient R remains to be determined. For the incident
wave, the component of the Poynting vector (2.17) normal
to the interface is:

N i
z =

κz

2ωµ0
|E0|

2
. (3.7)

We use the procedure sketched in Section 2.1 to deter-
mine the field on the conducting side z > 0.We first obtain
the magnetic field, by using (2.8, 3.2) and by matching its
value at z = 0 with that of (3.5), as

Hy =
κE0

ωµ0
(1−R) eikzz . (3.8)

The charge density, obtained from (2.10), has the form

ρ = c e−βzz, (3.9)

where βz is defined by (3.3), and we find the coefficient
c by writing that Jz, given by (2.14, 2.15), vanishes at
z = 0. This yields, using (3.8, 3.9),

c =
σ

σ − iωε

κxκβ
2

ω2µ0βz
E0 (1−R) . (3.10)

Altogether E and J are obtained by means of (2.12–2.15),
using the definitions (3.1–3.3), as:

Ep
x

kz
=

Ep
z

−κx
=

Jp
x

kzσ
=

Jp
z

−κxσ

=
κ

k2
E0 (1−R) eikzz , (3.11)

Es
x

−iκx
=
Es
z

βz
=

Js
x

ωεκx
=

Js
z

iωεβz

=
σκxκ

iωεk2βz
E0 (1−R) e−βzz. (3.12)

Finally, the reflection coefficient R is found by express-
ing the continuity of Ex across the interface. From (3.6),
(3.11) and (3.12) we thus obtain:

R =
C +D −B∗

C +D −B
, (3.13)

where we introduced the dimensionless quantities

B ≡
iκzκx
κ2

= i |B| = −B∗ , (3.14)

C ≡ −
ikzκx
k2

, (3.15)

D ≡
iσκ3

x

ωεk2βz
=

κ3
x

ω2µ0ελ2β2βz
· (3.16)

Remember that k, kz, β and βz given by (2.9, 3.2) and
(3.3) are complex. We might have simplified the expres-
sion (3.13) by dividing out the numerator and denomi-
nator by B = −B∗ or by C, but (3.13) better exhibits
the following structure that we shall encounter again for
other geometries: the parameter B is associated with the
dielectric region, the parameters C and D with the semi-
conductor; the effects of propagation and of screening are
separated since C does not depend on the screening length
and D vanishes with it.

The explicit expressions for the field and the current
result from the replacement of 1−R by−2B/ (C +D −B)
in equations (3.8–3.12). In the limit of a vanishingly short
static screening length λ,D disappears and we can check
on the expressions (3.11, 3.12) the features described at
the end of Section 2.1. Note that the occurrence of a finite
screening length not only produces the screening contribu-
tions (3.12) to E and J in a region of thickness λ near the
interface, but also modifies the propagative contributions
(3.5, 3.6, 3.8) and (3.11) in both materials through the
parameter D which enters the reflection coefficient (3.13).

3.3 Expressions for energy exchanges

Let us write the energy flux N of the field and the power
w (r) that it yields to the carriers at each point, using
the expressions of Section 2.2. We normalize the incident
flux perpendicular to the interface, thus choosing the am-
plitude E0 in (3.5, 3.6) so as to let (3.7) be equal to 1.
Taking the time-average over a period suppresses, accord-
ing to (3.4), the oscillations in the x-direction.

In the insulating region z < 0, we have

Nx =
κx

κz

∣∣1−Re−2iκzz
∣∣ , (3.17)

which displays interferences between the incident and re-
flected waves, and

Nz = 1− |R|2 , (3.18)

which does not depend on z. For z > 0 the energy flux of
the e.m. wave is given by:

Np
x =

4 |B|κ2
xRe k−2

|C +D −B|2
e−2Im kzz , (3.19a)

N s
x =

4 |B|

|C+D−B|2 κx
Re

[
Dβze

−(βz+ik∗z)z
]
, (3.19b)
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Np
z =

4 |B| Im (−C)

|C +D −B|2
e−2Im kzz , (3.20a)

N s
z =

−4 |B|

|C +D −B|2
Im

[
D e−(βz+ik∗z )z

]
. (3.20b)

The tangential component has at the interface a disconti-
nuity

Nx (+0)−Nx (−0) = |1−R|2
κx

κz

(
εi

ε
− 1

)
, (3.21)

which vanishes only if εi = ε, while we check from (3.13),
(3.18) that the normal component Nz is continuous.

The local dissipation rate per unit volume and unit
incident flux is readily found from (2.24), (2.25) and (3.20)
as

wp (z) =
8 |B| Im (−C)

|C +D −B|2
Im kz e−2Im kzz, (3.22)

ws (z) =
−4 |B|

|C +D −B|2

×Im
[
D (βz + ik∗z) e−(βz+ik∗z)z

]
, (3.23)

and the total power absorbed by the material is checked to
be

W = Nz (+0) =
4 |B|

|C +D −B|2

×Im (−C −D) = 1− |R|2 , (3.24)

simply expressing the energy conservation.
The equations (3.23–3.24) illustrate the general prop-

erties exhibited in Section 2.2, and we shall discuss
some of their physical consequences in Section 4. Let
us simply note here that, according to (3.2) and (3.3),
Re kz , Im kz ,Re βz and −Im βz are positive. Note also
the bounds

−
3π

4
< argC < 0, 0 < argD <

3π

4
,

−
π

4
< arg (−DC∗) <

π

2
, (3.25)

−
3π

4
< arg (C +D) < 0,

0 < arg [D (βz + ik∗z)] <
5π

4
, (3.26)

on the phases of the various coefficients which appear in
the above equations.

4 Plane wall: discussion

4.1 Increase or decrease of the overall absorption

Let us first consider the total absorption (3.24), also equal
to (2.23). Using (3.26) we readily check that it is positive.

As a consequence of (3.25), its two contributions

W p =
4 |B| Im (−C)

|C +D −B|2
, W s = −

4 |B| Im D

|C +D −B|2
, (4.1)

have opposite signs. Through the introduction of the pa-
rameter D, the finiteness of the screening length has thus
two consequences on the total absorption. On the one
hand it produces the negative screening term W s which
always reduces the absorption. On the other hand the ap-
pearance of D in the reflection coefficient indirectly affects
the propagative term W p through its denominator. This
term W p is reduced if:

|D|2 − 2Re D∗ (B − C) > 0; (4.2)

it is otherwise enhanced. Note that (3.25) implies
Re D∗B > 0 and Re (−D∗C) > 0.

Both effects therefore concur to reduce the absorption
when the condition (4.2) is satisfied; they compete when
it is violated. In order to discuss the latter case, we shall
compare the total absorption W with the absorption W0

that would take place in a material where λ = 0, all other
parameters remaining the same. We find

W −W0

W0
=

1

|C +D −B|2

[
2Re (−DC∗)− |D|2

−
(
|B|2 + |C|2

) Im D

Im (−C)

]
, (4.3)

where each term in the bracket is positive on account of
(3.25, 3.26).

We shall find convenient in the present section to dis-
cuss the equations in terms of the four real dimensionless
parameters,

t ≡
2κzκx
κ2

, or t ≡ sin 2θi , tg θi =
κx

κz
, (4.4)

which is directly related to the incidence angle θi of the
incoming wave, u and s defined by

u ≡
ω2µ0ε

κ2
x

, s ≡
σ

ωε
, (4.5)

which characterize the dielectric constant and the conduc-
tivity of the material for given ω and κx, and

v ≡
1

λ2κ2
x

, (4.6)

which characterizes its static screening length. The inde-
pendent parameters s, t, u, v are positive, and t 6 1. The
normal wavenumbers kz and βz are then given by:

kz = κx
√
u (1 + is)− 1 ,

βz = κx
√
v (1− is−1) + 1 , (4.7)

and the three complex parameters B,C and D introduced
by (3.14–3.16) are expressed by:

B =
it

2
, C =

−i
√
u (1 + is)− 1

u (1 + is)
,

D =
is

u (1 + is)
√
v (1− is−1) + 1

· (4.8)
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We also introduce the notations

U ≡
√

(u− 1)2 + u2s2 =
|kz |

2

κ2
x

,

V ≡
√

(v + 1)2 + v2s−2 ≡
|βz|

2

κ2
x

, (4.9)

which allow us to write:

√
2 kz = κx

(√
U + u− 1 + i

√
U − u+ 1

)
, (4.10a)

√
2 βz = κx

(√
V + v + 1− i

√
V − v − 1

)
. (4.10b)

We can then express the change (4.3) in the total ab-
sorption as:

W −W0

W0
|C +D −B|2

u2V

s
[
√
U + u− 1

+ s
√
U − u+ 1] =

1
√
V + v + 1

×

[(
u−

t2u2

4

)
(V + v + 1)−

V + 1

1 + s2
−
t2u2

4
v

]

−
s2 (U + 1)

(1 + s2)
√
U − u+ 1

· (4.11)

Let us first discuss the onset of the phenomenon, when
the screening length λ begins to increase, starting from
zero. If it is sufficiently small so that λκx � 1 and
λκ2

x

√
s � |kz | , we have v � 1, hence V ∼ v

√
1 + s−2.

As |D| ∼ s3/2κ3
xλ
(
1 + s2

)−1/4
/ |k|2 is then small, the in-

equality (4.2) is violated and we are in a situation of com-
petition between the reduction of the absorption due to
W s and its enhancement due to the denominator in W p.
The last term of (4.11) can be neglected since v � u, so
that the effect has the sign of:

W − W0 ∝ u

(√
1 + s2

s
+ 1

)

−
1

s
√

1 + s2
−
t2u2

4

(√
1 + s2

s
+ 2

)
. (4.12)

Thus, depending on the positive parameters s, t, u defined
by (4.4) and (4.5), with t 6 1, the introduction of a fi-
nite (but small) screening length may either enhance the
absorption if (4.12) is positive, or reduce it if (4.12) is neg-

ative. For given s, if u is smaller than 1− s/
√

1 + s2, the
absorption is reduced for any t, that is, for any incidence
angle; on the contrary if u takes a larger value, lying in
the interval∣∣∣∣12u(1 + s

√
1 + s2 − s2)− 1

∣∣∣∣ < s

√
2− 2s(1 + s2)−1/2,

(4.13)

the absorption is enhanced for any t (0 < t 6 1) ; in the
other two ranges of u, the enhancement takes place for

values of t smaller than some bound. In particular, for
s� 1, the region of enhancement is:

ut2 <
8

3
, (4.14)

which yields an upper bound for t if u > 8
3 , while en-

hancement takes place for any incidence angle if u < 8
3 .

For s � 1, the absorption is enhanced if u lies between
the bounds:

1

cos2 θi
≶ u ≶ 1

sin2 θi
, for θi ≶ π

4
; (4.15)

it is otherwise reduced.
Increasing values of λ, for which v is no longer large,

make the negative term in |D|2 of (4.3), or equivalently
the last term of (4.11), significant. A typical case is the
limit when the screening length is much larger than the
skin depth, that is,

Re βz � Im kz, (4.16)

or equivalently:

√
V + v + 1�

√
U − u+ 1. (4.17)

This takes place in particular for s � 1 with finite u
and v, or for u � 1 with finite s and v. We can readily
check that (4.11) is then negative (at least if t is not too
small). Hence, when the screening length exceeds the skin
depth, the absorption becomes eventually smaller than for
a vanishing screening length if (4.16) is satisfied, all other
parameters being kept fixed.

Let us analyse this effect for s � 1 with finite u and
v. The asymptotic forms

C ∼ −

√
i

us
, Re D ∼

1

u
√
v + 1

,

Im D ∼
3v + 2

2us (v + 1)3/2
, (4.18a)

|C +D −B|2 ∼
t2

4
+

1

u2 (v + 1)
(4.18b)

provide as contributions (4.1) to the total absorption

W p

W0
∼

[
1 +

4

t2u2 (v + 1)

]−1

=

[
1 +

(
εi

ε

)2
λ2κ4

x

κ2
z (1 + λ2κ2

x)

]−1

, (4.19a)

W s

W p
∼

− (3v + 2)√
2us (v + 1)

3
=
−λκ2

x

(
3 + 2λ2κ2

x

)√
2ωµ0σ (1 + λ2κ2

x)
3
, (4.19b)

W0 ∼
4
√

2

t
√
us

=
2
√

2κ2

κz
√
ωµ0σ

, (4.19c)
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where W0 is the corresponding value for λ = 0. Due to
the large value of s, the absorption coefficient W0 is small;
the reflection, of metallic type, is strong. However, when
λ becomes finite, the absorption W further decreases, the
reflection |R| further increases, for two reasons:

(i) The contribution W p is smaller than W0

(Eq.(4.19a)), because the wave penetrates the medium
with a smaller amplitude than for λ = 0. This can be
seen from the increase (4.18b) of the factor |C +D −B|2

which divides all the expressions of Section 3.3 giving the
energy of the field in the medium. We can also see that
the expressions (3.8–3.12) for the field itself contain the
factor 1 − R = −2B/ (C +D −B) which for s � 1 has
a smaller modulus for finite v than for large v. Note that

W p/W0 given by (4.19a) becomes small as
(
π
2 − θ

i
)2

for

grazing incidences, while W0 increases as
(
π
2 − θ

i
)−1

.
(ii) The direct effect W s of screening is negative. This

term is, however, small compared to W p, as shown by
(4.19b). It is equal to the space-integral of the oscillatory
contribution (3.23) to the local absorption ws (z) , and its
sign indicates that the negative parts of ws (z) slightly
overcome its positive parts. Although locally ws (z) can
be larger than wp (z) (Sect. 4.3), the dominant overall
contribution is that of W p.

4.2 Complete absorption

The fact that in some circumstances the finiteness of the
screening length can enhance the absorption suggests us
to look for the possibility of a complete absorption of a
wave by a semiconductor or an ionic conductor. In such
a situation, the incoming wave is not reflected at all, its
whole energy being dissipated through the conductivity of
the wall. We thus require W = 1 in (3.24), or R = 0, that
is, from (3.13),

C +D = B∗. (4.20)

Note first that, in a metal where the screening length λ
vanishes we have D = 0, and C cannot equal B∗, since the
equation C = B∗ implies either kz = κz or kz = κ2

x/κz but
kz is not real if σ 6= 0. The condition (4.20) cannot then be
satisfied, and the incident wave is always partly reflected
(fully for σ → ∞). On the other hand, if both materials
are dielectrics, the reflection coefficient may vanish since
σ = 0 allows the equation C = B∗ to have a solution:
we then recover, through κz/κx = κx/kz the Brewster
incidence angle. The extinction that we shall find, for finite
values of the conductivity and the screening length, is of
a different nature.

We shall discuss this problem in terms of the four in-
dependent dimensionless parameters s, t, u, v defined by
(4.4–4.6). As functions of these variables, B,C and D are
given by (4.8). In order to express that the reflection coef-
ficient R vanishes, we have to impose on the four real vari-
ables s, t, u, v the two real equations (4.20), together with
inequalities expressing that s, u, v must be positive and
that 0 < t 6 1, not to speak of physical limitations about

practical feasibility. We write the explicit form of the equa-
tions to be solved by multiplying (4.20) with u (1 + is) ,
then by using (4.10) to separate the real and imaginary
parts. This yields:

tu
√

2
=
√
U + u− 1−

s

V

√
V + v + 1

=
1

s

√
U − u+ 1−

1

V

√
V − v − 1, (4.21)

where U and V were defined by (4.9).
We work out the solution of (4.21) and discuss the re-

quired inequalities in Appendix A, equations (A.1–A.20).
The final solution is conveniently written by introducing
the positive combinations

X ≡
1

V
√

2

√
V + v + 1 + 2v2s−2, (4.22a)

Y ≡
1

V
√

2

√
V − v − 1, Z ≡

v

V − v − 1
. (4.22b)

We then find t and u as functions of s and v in the form

t =
X − Y

X (X − Y + Y Z)
, (4.23)

u = 2X (X − Y + Y Z) , (4.24)

and the region of the plane (s, v) where this solution exists
is characterized by

(X − Y ) (X − 1) +XY Z > 0, (4.25)

which expresses that t 6 1. The other inequalities express-
ing that s, t, u, v are positive are automatically satisfied.
It is shown in Appendix A that the condition (4.25) has
the form:

v 6 vmax (s) , (4.26)

where the curve v = vmax (s) is shown in Figure 1.
Thus, although the phenomenon is permitted, it re-

quires special relations (4.22–4.25) between the various
data to be satisfied. For each pair of variables s ≡ σ/ωε
and v ≡ 1/λ2κ2

x lying in the region (4.26), we obtain a sin-
gle solution for t ≡ sin 2θi = 2κzκx/κ

2 and u ≡ ω2µ0ε/κ
2
x.

For given λ and ε we can therefore determine in the re-
gion (4.26) a transverse wavelength (from v), a frequency
ω (from u), a conductivity σ (from s), and a value of t
such that the incident wave is fully absorbed. Actually,
each t < 1 provides two solutions, associated with com-
plementary angles of incidence θi and π

2 − θ
i, and hence

with two values for εi (or for κz =
√
ω2µ0εi − κ2

x), given
by:

ε

εi
= u sin2 θi, sin 2θi = t. (4.27)

The boundary t = 1 of the allowed domain, that is, s = 0
and v = vmax (s) , corresponds to an incidence angle of π4 .

A systematic analytic study of these equations is
presented in Appendix A. There we give in particular
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Fig. 1. Complete absorption in a wall. (i) The reflection coefficient R may vanish for any pair of values of s ≡ σ/ωε and
v ≡ 1/λ2κ2

x such that v 6 vmax (s) , provided t and u take the values (4.23, 4.24). We have drawn here, in the plane (s, v) , the
corresponding level lines for t = sin 2θi, where the incidence angle θi is close to π

4 for t . 1, close to 0 or to π
2 for t small. The v

-axis is a level line with t = 1. The shaded region, for which t would exceed 1, is forbidden. For t < 2
3

√
2 ' 0.943, each level line

starts from the point s = t−1 − 1 of the s-axis. The plot on the right shows the vicinity of the origin; it exhibits the bending
of the lines t < 2

3

√
2, which eventually produces a kink directed towards the origin. For 1 > t > 2

3

√
2, two branches are issued

from the origin (for t = 2
3

√
2, their common slope is

√
3); the lower branch ends up on the s-axis, while the upper one passes

round the forbidden region then goes on as v ∼ t2s2.

Fig. 2. Complete absorption in a wall. (ii) The level lines for u = ω2µ0ε/κ
2
x = ε/εi sin2 θi such that R = 0 are drawn in the

plane (s, v) . For u > 2, the level line starts from the point s = u
2 − 1 of the s-axis. The level line u = 2 is tangent to the s-axis

at the origin; furthermore, the v-axis is another level line with u = 2. The rectangle s < 0.5, v < 2 is enlarged on the right side.
It shows that, as u decreases below 2, the two level lines, issued from the origin, get closer to each other so as to generate a
saddle point for u = 1.633. For 1.633 > u > 1.5, the two level lines consist of a closed loop and an open branch; only the latter
survives for u < 1.5.
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the asymptotic expressions of the various quantities, in
the limits where s or v are either small or large (Eqs.
(A.21–A.34)). Here we content ourselves with showing the
maps (Figs. 1 and 2) which represent equations (4.23) and
(4.24). The boundary (4.26) of the domain in which the
reflection coefficient may vanish has a hyperbolic branch
v ∼ 2.9s−1 for s→ 0 and a parabolic branch v ≈ s2 +3.5s
for s→∞. The function vmax (s) has a minimum v ' 9.0
for s ' 0.7, so that total absorption is always possi-
ble when the screening length is sufficiently large so that
λκx & 0.33. The range of values for the physical parame-
ters which provide a vanishing reflection coefficient seems
wide, so that it should be possible to exhibit the phe-
nomenon experimentally.

We can easily check that the above results are com-
patible with those of Section 4.1, to wit, that the change
(4.11) of the absorption with λ is positive when (4.23),
(4.24) are satisfied. In particular, the ratio of the normal
component of the screening length to the skin depth,

Im kz

Re βz
=

√
U − u+ 1

V + v + 1
, (4.28)

is expressed for R = 0 by

Im kz

Re βz
=

s

V

√
V + v + 1 + 2v2s−2

V + v + 1

=
s

V

√
2V − 2v − 1, (4.29)

where we used (A.19), (4.22a). In the plane (s, v) , (4.29)

is small as
√

2s3/v for s� v. It behaves as

Im kz

Re βz
≈

1

v + 1

√
s2 +

v3

(v + 1)
2

in both regions v � 1, finite s, and s� 1, arbitrary v. It
may thus become large, as s/ (v + 1) , only in the region
s � v + 1. There t is small as

√
v + 1/s and u is large

as 2s/ (v + 1) (see Eq.(A.33)). This is in agreement with
Section 4.1, where we showed that the absorption cannot
be larger than W0 when s � 1 for fixed values of t, u
and v.

4.3 Possibility of local cooling

We have seen in Section 3.3 that the time-averaged power
given by the field to the charge carriers is at each point the
sum of two contributions. The first one, wp (z) given by
(3.22), has the same exponential decrease exp [−2Im kzz]
as when the screening length vanishes, over a range equal
to half the skin depth [Im kz]

−1 ≡ χ−1. Its coefficient
may, however, be smaller or larger, depending whether
the inequality (4.2) holds or not. The additional term,
ws (z) given by (3.23), which decreases exponentially as
exp [− (Im kz + Re βz) z] , displays moreover oscillations

with the wavelength 2π (Re kz + |Im βz |)
−1
.

A remarkable situation occurs when the screening
length [Re βz ]

−1 is much larger than the skin depth χ−1,

a property expressed by the condition (4.17). In this case,
the decrease in e−χz of |ws (z)| is slower than that in e−2χz

of wp (z) ; there exists a range where |ws (z)| is larger than
wp (z) , while remaining sizeable. Hence, we expect the

occurrence of layers with thickness π (Re kz + |Im βz|)
−1

where w (z) is alternately positive and negative. Thus, al-

though on the whole the positive fraction W = 1−|R|2 of
the power of the e.m. wave is dissipated in the medium,
there are regions where the carriers are cooled down on
average, under the action of the incident wave, instead of
being heated. This is compensated for by the overheating
of the intermediate layers. On the one hand, the diffusion
current Js produced indirectly by the e.m. field may flow
in a direction opposite to that of the propagating electric
field Ep. On the other hand, the electric field Es produced
by the motion of the screening charges may be directed
against the ohmic current Jp. For such contributions to
w (z) , the carriers are slowed down in their motion by an
electric force. If (4.16) is satisfied, the expressions (3.22,
3.23) show the possibility of existence of regions where
ws (z) dominates wp (z) , that is, where this deceleration
process is more efficient than the usual ohmic acceleration.

The same phenomenon can also be seen on the normal
component (3.20) of the Poynting vector. Since w (z) =
−∂Nz/∂z (Eq. (2.18)), the existence of oscillations in
w (z) and the form of Nz (z) imply that Nz (z) is negative
(positive) around values of z where w (z) changes its sign
by decreasing (increasing). At points z1 whereNz (z1) < 0,
the flow of energy of the e.m. field is opposite to the origi-
nal direction of propagation, due to a local predominance
over Ep of Es, which is there both larger than Ep and
oriented differently. The matter lying in the region z > z1

then receives on average a negative power from the field.
We have discussed so far only the exponential depen-

dences on z of wp, ws, Np
z and N s

z , keeping aside the am-
plitudes. The ratio of the prefactors of N s

z and Np
z in (3.20)

is

|D|

Im (−C)
=

√
2
√

1 + s2
√
U − u+ 1

(U + 1)
√
V

, (4.30)

and the ratio of the prefactors of ws and wp in (3.22),
(3.23) is

|D (βz + ik∗z)|

2Im (−C) Im kz
=

√
1 + s2

(U + 1)
√
V

[
U + V

+
√

(U − u+ 1) (V + v + 1)

−
√

(U + u− 1) (V − v − 1)

]1/2

. (4.31)

For s � 1 with finite u and v, a typical situation where
Re βz � Im kz, the ratio (4.30) behaves as

√
2s/u (v + 1)

and (4.31) as
√
s/u (v + 1).These quantities are large, and

hence the contributions N s
z (z) and ws (z) emerge still bet-

ter. They may be important even at places where Np
z (z)

and wp (z) have not yet been sunk by their exponential
decrease. An example is shown in Figure 3.
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Fig. 3. Local exchanges of power between the field and the
carriers. The dashed line shows the contribution wp given by
(3.22), which decreases as e−2χz as function of the distance
z to the interface, where χ = Im kz is the skin depth. The
contribution ws due to screening, given by (3.23) and shown
by a dashed-dotted line, oscillates. The carriers are cooled in
the regions where w = wp + ws, in solid line, is negative. The
curves have been drawn for s = 8, t = 1, u = 1, v = 1

2
, which

correspond to σ = 8ωε, θi = π
4
, εi = 2ε, κλ = 2, and the

wavenumbers are kz/κx = 2 + 2i, βz/κx = 1.23 − 0.03i.

Consider in particular the vicinity of the interface. The
energy flux, expressed by (3.24), is there positive. How-
ever, the power yielded locally by the field to the carriers,
given by (3.22, 3.23) as

wp (0) + ws (0) =
4 |B|

|C +D −B|2

× {2Im kzIm (−C)− Im [D (βz + ik∗z)]}

=
4
∣∣BC2

∣∣usκx
|C +D −B|2

×

[
1−Re

(s+ i)√
u (1 + is)− 1

√
v (1− is−1) + 1

]
, (4.32)

may have either sign. As expected, it is positive if the
screening length is short since ws = 0 for v � 1. However,
it can be negative if v is finite. In particular, for s � 1
with fixed u and v, the negative screening term ws (0)
dominates the first one, so that the carriers are cooled
near the interface, at the rate:

w (0) ∼ −tκx

√
2us

v + 1

[
t2u

4
+

1

u (v + 1)

]−1

. (4.33)

As a consequenceNz (z) increases with z near z = 0 in this
case. The energy flux of the e.m. wave is enhanced there
due to the field generated by the charges moving within
the material. This excess of radiated energy balances for
the local cooling of the layer below the interface.

Let us study more explicitly the local power exchange
in the limit s� 1, with t, u, v remaining finite. Although
in this case most of the energy is reflected, as shown by

(4.19), the absorption is expected to take place anoma-
lously. Indeed the energy flux (3.20) is then expressed by:

Np
z (z) ∼ W pe−2χz, χ ≡

√
1

2
usκx, (4.34a)

N s
z (z) ∼ W p

√
2s

u (v + 1)
e−χz sinχz, (4.34b)

where the factor W p is given by (4.19) and where the
incident flux is taken as unity. We recover at z = 0 the
value Nz (0) ∼ W ∼ W p, in agreement with (3.24) and
(4.19). However, within the material, in the region where
z is not too large compared to the skin depth, the flux
is dominated by N s

z which is much larger than Np
z . Its

coefficient,

W p

√
2s

u (v + 1)
=

8tu
√
v + 1

t2u2 (v + 1) + 4
,

is finite for s � 1, and smaller than 2, a value reached
for tu

√
v + 1 = 2. As indicated above, it first increases

with z in conjunction with the negative sign of w (z) . It
reaches for χz = π

4 a maximum, which can be as high as

2e−π/4 sin π
4 ' 0, 65. Although the incident flux is nearly

completely reflected and does not penetrate the medium, a
significant fraction of this flux appears again at a distance
from the interface equal to π/4 of the skin depth. Farther,
between π < χz < 2π, the flux becomes negative, and the
next oscillations are damped by the exponential factor.

The power w (z) exchanged with the carriers is accord-
ingly dominated in this limit by

ws (z) ∼ 2W p

√
s

u (v + 1)
χe−χz sin

(
χz −

π

4

)
, (4.35)

which is much larger than the local Joule heating wp (z) ∼
2W pχe−2χz.We recover the negative value (4.33) at z = 0.
Cooling takes place for χz < π/4, then for 5π

4 < χz < 9π
4 ,

and so on, heating in the other intervals, in alternative
layers. The prefactor in (4.35) is large as

√
s, so that the

transfer of energy between field and carriers within each
layer is of zeroth order in s, whereas the total Joule trans-
fer W p to the whole material is much smaller, in 1/

√
s.

In fact the integral of (4.35) from 0 to ∞ vanishes (it is
equal to N s

z (0)). The phenomenon thus corresponds to a
mere transfer of heat within the material, from the lay-
ers
(
0, π4

)
,
(

5π
4 ,

9π
4

)
, etc., to the layers

(
π
4 ,

5π
4

)
, etc. This

transfer is induced by the incoming wave, which, however,
hardly participates in the energy balance.

Let us further analyse the phenomenon by examining
the configuration of the field and of the electric current in
the considered limit s � 1, finite t, u, v. As for a metal,
the wavevector k = (κx, 0, kz) is nearly perpendicular to

the interface since kz ∼
√

ius κx ∼ (1 + i)χ. However the
wavevector β = (−iκx, 0, βz) is oblique, with the finite
ratio βz/κx ∼

√
v + 1; it is associated with propagation

in the x-direction, damping in the z-direction. According
to (3.11), (3.12) the electric field E = Ep + Es and the
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current density J = Jp + Js have as components:

Ep
x = Jp

x/σ ∝ eikzz, (4.36a)

Es
x =

κxE
s
z

iβz
=

Js
x

iωε
= −

κxJ
s
z

ωεβz
∝
D

C
e−βzz , (4.36b)

where we dropped a common factor
εiE0 (1−R) kz/ε (1 + is)κ on the right-hand side;
the components Ep

z and Jp
z are negligible. Since DC−1,

given by (4.18), is large as
√
s, and since Im kz � βz, Es

is much larger than Ep. Hence, the field E ' (Es
x, 0, E

s
z) is

a longitudinal plane wave with its wavevector in the direc-
tion β of ∇ρ. The current J is dominated within the skin
χz < 1

2 lnus (v + 1) by the contribution Jp ' (Jp
x , 0, 0) ,

which has the same configuration as in a metal, namely
flow in the x-direction and oscillations with damping
in the z -direction; beyond, it has a tail J ' iωεE in
quadrature with E. The dominant contribution to the
local power transfer from the field to the carriers is then:

w (z) ∼ Re (Es
x J

p∗
x ) ∝ Re DC−1e−(βz+ik∗z )z

∝ Re exp
[
−
√

ius κxz − i
π

4

]
, (4.37)

where we neglected βz ∼ κz
√
v + 1 compared to kz. We

thus recover the behaviour (4.35). Likewise, the Poynting
vector, which reduces to N (z) ∼ 1

2Re [Es ×H∗] , is not
directed along k, which is nearly in the z-direction as in
a metal, but is perpendicular to β in the incidence plane.
Among the various contributions to w (z) , the dominant
one, (4.37), can be interpreted as follows. The charge carri-
ers, characterized by the quasi-ohmic current J ∼ Jp, flow
on average back and forth in the x-direction, with an ex-
ponential profile e−χz . They are submitted to the electric
field E ∼ Es, which is mainly produced by the diffusive
motion of the screening charges, and which is oscillating
like J as function of time and of x, but which is practically
independent of z in the active region. There exists there-
fore a relative phase, varying as ikzz, between the oscilla-
tions of E and J. Thus, depending on the value of z, the
charge carriers are on average accelerated or decelerated
in their motion along x by the screening electric field. This
interpretation of the dominant contribution (4.37) to the
power exchanges should, however, not hide the fact that
Es
x and Jp

x are coupled by the equations of Section 2.1 to
the other components of E and J which, although smaller,
contribute to control the effect.

Note finally that local cooling may take place for other
values of the parameters than in the case s � 1, finite
t, u, v that we just studied. This effect does not even re-
quire the total absorption rate W to be smaller than the
value W0 associated with a vanishing screening length. In
particular, it can occur in the extreme case W = 1 of
a complete absorption (Sect. 4.2), at least in the region
s � v + 1, t ∼

√
v + 1/s, u ∼ 2s/ (v + 1) where (4.29)

is large. Although the whole energy flux of the incoming
wave then enters the material and is dissipated inside, the
flux for z > 0,

Nz (z) ∼ e−2χz + e−χz sinχz, (4.38)

where χ ≡ κx
√
us/2 = sκx/

√
v + 1, and the local dissi-

pation rate

w (z) ∼ 2χe−2χz + χ
√

2e−χz sin
(
χz −

π

4

)
, (4.39)

may again become negative at places. However the coef-
ficients of both contributions have here comparable sizes;
moreover the effect is expected to take place only at a dis-
tance from the interface larger than z = 3.95χ−1, where
the damping is already strong.

5 Spherical inclusion

5.1 Determination of the fields and scattering
amplitudes

We now turn to another simple geometry, a spherical piece
of semiconductor or ionic conductor embedded in a dielec-
tric medium. The case of a metallic sphere in the optical
regime, near the main plasma resonance, has some math-
ematical similarity with the forthcoming analysis; it has
been dicussed in reference [6]. We shall study the scat-
tering and the absorption of a plane wave by this sphere.
We shall take advantage of the rotational invariance by
means of an angular momentum analysis, using for the
vector spherical harmonics the conventions:

Xlm = −
ir×∇Ylm√
l (l + 1)

,

Yt
lm =

r∇Ylm√
l (l + 1)

,

Yr
lm =

r

r
Ylm. (5.1)

We dropped for shorthand the argument (θ, ϕ) ≡ r̂ in
the scalar spherical harmonics Ylm and in the vector ones
Xlm,Y

t
lm and Yr

lm. The latter quantities constitute an
orthonormal basis for the vector fields on the unit sphere,
and are related to the standard vector spherical harmonics
Yl
jm by:

Yt
lm =

√
l + 1

2l+ 1
Yl−1
lm +

√
l

2l + 1
Yl+1
lm ,

Yr
lm =

√
l

2l+ 1
Yl−1
lm −

√
l + 1

2l + 1
Yl+1
lm . (5.2)

The vector harmonics Yr
lm (l > 0) are radial, while Xlm

and Yt
lm (l > 1) are transverse, perpendicular at each

point to r/r. Their parities are (−)
l+1

for Xlm, (−)
l

for
Yr
lm and Yt

lm. We shall also use the following equations
of differential calculus, where f denotes any function of
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the radial coordinate r:

div Xf = 0,

curl Xf = iYt

(
f ′ +

f

r

)
+ i
√
l (l + 1)Yr f

r
, (5.3a)

div Ytf = −
√
l (l + 1)Y

f

r
,

curl Ytf = iX

(
f ′ +

f

r

)
, (5.3b)

div Yrf = Y

(
f ′ +

2f

r

)
,

curl Yrf = −i
√
l (l + 1)X

f

r
; (5.3c)

for shorthand, we dropped the coordinates r̂ and r as well
as the double index lm, which is the same in (5.3) for the
scalar spherical harmonics Y and the three vector harmon-
ics. Spherical waves with (real or complex) wavenumber k
will be expressed in terms of the spherical Bessel functions

jl (kr) , h
(±)
l (kr) , defined with the conventions:

jl (z) =

√
π

2x
Jl+ 1

2
(z)

=
1

2i

[
h

(+)
l (z)− h(−)

l (z)
]
, (5.4a)

hl (z) ≡ h
(+)
l (z) ,

h
(±)
l (z) =

l∑
p=0

(∓i)l−p (l + p)!

2pp! (l − p)!

e±iz

zp+1
. (5.4b)

Let us first write the multipolar expansion of the in-
cident plane wave, together with the outgoing wave scat-
tered by the conducting sphere with radius R. We assume
the incident wave to propagate in the z-direction, as eiκz

where κ is defined by (2.7), and to be circularly polarized;
the polarization is denoted by ε = +1 (or −1) for the right
(or left) direction. We normalize the electric field of the
plane wave in such a way that its time-dependent value

in the plane z = 0 is
(

1√
2
E0 cosωt, ε 1√

2
E0 sinωt, 0

)
and

the incident energy flux is κE2
0/2ωµ0. The corresponding

solution of (2.2) for the e.m. field in the dielectric region
r > R has then the general form:

E(r) = E0

∑
l>1

il
√

2π (2l + 1) [Elεe(r) + Elεm(r)] ,

(5.5a)

Elεe(r) = εκ−1curl {Xlε (r̂) [jl (κr) +Alehl (κr)]} ,
(5.5b)

Elεm(r) = Xlε (r̂) [jl (κr) +Almhl (κr)] , (5.5c)

H(r) =
κE0

iωµ0

∑
l>1

il
√

2π (2l+ 1) [Hlεe(r) + Hlεm(r)] ,

(5.6a)

Hlεe(r) = εXlε (r̂) [jl (κr) +Alehl (κr)] , (5.6b)

Hlεm(r) = κ−1 curl Elεm(r) . (5.6c)

The terms in jl (κr) describe the plane wave, those in
hl (κr) the outgoing partial waves. We denote by the in-
dices lεe with ε ± 1 the electric 2l -polar contribution;
its magnetic field (5.6b) is transverse (TM mode), while
the corresponding electric field (5.5b) is a combination of
radial and transverse vector harmonics Yr and Yt given
by (5.3a). Symmetrically, for the magnetic 2l-polar contri-
bution, denoted lεm, the electric field (5.5c) is transverse
(TE mode), while the magnetic field (5.6c) is oblique. The
specific angular dependence of the outgoing waves and the
fact that their coefficients Ale and Alm are the same for
both polarizations result from the symmetries of the prob-
lem. These amplitudes are related to the eigenvalues of the
S-matrix by S = 1 + 2iA. We show below that they are
given by (5.14), (5.15).

We determine the scattering amplitudes Ale and Alm
by proceeding along the lines of Section 2.1. We first write
the magnetic field within the semiconductor or ionic con-
ductor which lies in r < R. Its multipolar expansion is
identical with (5.6a), and the coefficient of each term is ob-
tained by matching its tangential components with (5.6b)
or (5.6c) at r = R:

Hlεe(r) = εble Xlε (r̂) jl (kr) ,

ble =
jl (κR) +Ale hl (κR)

jl (kR)
, (5.7a)

Hlεm(r) = κ−1 blm curl Xlε (r̂) jl (kr) , (5.7b)

blm =
κR [j′l (κR)+Alm h′l (κR)]+jl (κR)+Alm hl (κR)

kRj′l (kR)+jl (kR)
.

(5.7c)

The wavenumber k was defined in (2.9).
We next write the general form for the charge density

for r < R, which is a solution of (2.10) where β is the
dynamical screening length (2.11):

ρ (r) = εβεE0

∑
l>1

il
√

2π (2l + 1)clYlε (r̂) jl (iβr) . (5.8)

The coefficients cl will be obtained by cancelling the radial
component r = R of the current (2.14, 2.15). However, the
contribution Jp to this current, which is proportional to
curl H, has a radial component which arises solely from
the electric multipolar terms (5.7a), because the magnetic
term curl curlXlεjl generated by (5.7b) is equal to k2Xlεjl
and is thus purely transverse. The coefficients cl in (5.8)
are therefore coupled to the amplitudes Ale only. The scat-
tering of the magnetic multipolar partial waves, for which
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the electric field is transverse, is not affected by the occur-
rence of a finite screening length λ. The amplitudes Alm
are the same as for λ = 0, and the magnetic multipolar
contributions to ρ, to Es and to Js vanish. The situation
is the same as in Section 3.1, where a plane wave, lin-
early polarized in a direction parallel to the plane wall,
did not feel the finiteness of the screening length because
no charge density appeared anyhow. Here, instead of the
polarization, it is the electric or magnetic multipolarity
which governs the effect of screening.

Expressing J by means of (2.14, 2.15, 5.7a, 5.8) and
using (5.1, 5.3) to impose that the radial component of J
vanishes at r = R, we find:

cl =
i
√
l (l + 1)sκ

k2R
×
jl (κR) +Alehl (κR)

j′l (iβR)
, (5.9)

where β was defined in (2.11) and s ≡ σ/ωε as in (4.5).
The determination of the parameters Ale and Alm is
achieved by imposing the continuity at r = R of the
tangential components of the electric field (2.12, 2.13),
itself expressed in terms of (5.7) and (5.8). Using again
(5.1) and (5.3) we obtain:

κ2

k2
ble [kRj′l (kR) + jl (kR)] +

√
l (l + 1) κ

iβ
cljl (iβR)

= κR [j′l (κR) + Aleh
′
l (κR)] + jl (kR)+Alehl (κR) ,

blmjl (kR) = jl (κR) +Almhl (κR) .

The replacement of ble, blm and cl by (5.7a, 5.7c)
and (5.9) yields:

j′l (κR) +Aleh
′
l (κR)

κR [jl (κR) +Alehl (κR)]
+

1

(κR)2 = Cl +Dl, (5.10)

κR [j′l (κR) +Almh
′
l (κR)]

jl (κR) +Almhl (κR)
=
kRj′l (kR)

jl (kR)
, (5.11)

where we defined

Cl ≡
j′l (kR)

kRjl (kR)
+

1

(kR)
2 , (5.12)

Dl ≡
l (l + 1) s

(kR)
2
βR

jl (iβR)

j′l (iβR)
· (5.13)

Hence, using the Wronskian relation (B.3) recalled in Ap-
pendix B, we find:

Ale = −
jl (κR)

hl (κR)
+

1

(κR)
3

[hl (κR)]
2

×
1

Cl +Dl −Bl
, (5.14)

Alm = −
jl (κR)

hl (κR)
+

1

(κR) [hl (κR)]2

×
1

(kR)
2
Cl − (κR)

2
Bl
, (5.15)

with

Bl ≡
h′l (κR)

κRhl (κR)
+

1

(κR)2 · (5.16)

The fields are thus completely determined for r > R
by (5.5, 5.6, 5.14, 5.15). For r < R, the magnetic field
is given by (5.6a, 5.7, 5.14, 5.15). The electric multipolar
components of the electric field for r > R, including both
propagative and screening contributions are obtained from
(5.7–5.9, 5.14) as:

Ep
lεe (r)=

εR curl [Xlε (r̂) jl (kr)]

(κR)
2
hl (κR) (kR)

2
jl (kR) [Cl+Dl−Bl]

,

(5.17)

Es
lεe (r)=

εiR Dl ∇ [Ylε (r̂) jl (iβr)]

(κR)
2
hl (κR)

√
l (l+1) jl (iβR) [Cl+Dl−Bl]

,

(5.18)

and its magnetic multipolar components, purely propaga-
tive, are obtained from (5.7, 5.15) as:

Elεm (r)=
Xlε (r̂) jl (kr)

(κR)hl (κR) jl (kR)
[
(kR)

2
Cl−(κR)

2
Bl

] ·
(5.19)

The current density is expressed by Jp = σEp and, for the
electric multipolar contributions, Js = iωεEs.

5.2 Radiated and absorbed energy

The power of the e.m. wave scattered in each direction by
the semiconducting sphere is found by writing the large
distance limit of the field (5.5, 5.6) and building the Poynt-
ing vector. The resulting, differential and total, scattering
cross-sections read:

dσ

dr̂
=

2π

κ2

∣∣∣∣∣∣
∑
l>1

il
√

2l+1
(
AleY

t
lε−εAlmXlε

)∣∣∣∣∣∣
2

, (5.20)

σtot =
2π

κ2

∑
l>1

(2l+1)
[
|Ale|

2+|Alm|
2
]
. (5.21)

The cross-sections are the same for both polarizations ε =
±1. The screening length occurs only through the term Dl

entering the electric multipolar amplitudes Ale expressed
by (5.14).

The local dissipation rate within the sphere r < R, av-
eraged on time, is given by (2.24, 2.25). Let us write its
angular average 〈w (r)〉 , for a unit incident power flux,
using the expressions (5.17–5.19) for E and J. Angular
integration cancels the cross-terms between the different
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multipoles. The electric multipoles provide the two con-
tributions:

〈wp
e (r)〉 =

Im k2

2 |k|2 κ5R4

∑
l>1

(2l+ 1) (5.22)

×
|krj′l (kr) + jl (kr)|

2 + l (l+ 1) |jl (kr)|2

r2 |hl (κR) kRjl (kR) (Cl +Dl −Bl)|
2 ,

〈ws
e (r)〉 =

1

2κ5R4
Re

∑
l>1

(2l + 1) iDl

r2 |hl (κR) (Cl +Dl −Bl)|
2

×
d

dr

rjl (iβr) jl (k∗r)

jl (iβR) jl (k∗R)
, (5.23)

while the magnetic multipoles provide:

〈wm (r)〉 =
Im k2

2κ3R2

×
∑
l>1

(2l+ 1) |jl (kr)|2

|kRj′l (kR)hl (κR)− κRjl (kR)h′l (κR)|2
. (5.24)

The features of 〈w (r)〉 are similar to those that we found
in Section 4.3 for the plane geometry. The propagative
contributions 〈wp

e (r)〉 and 〈wm (r)〉 are everywhere pos-
itive. For |kR| � 1, they decrease from the surface of
the sphere towards the interior, as near the surface of the
plane wall, but moreover display here some weak oscil-
lations due to the interference of ingoing and outgoing
waves. The screening length enters 〈wp

e (r)〉 through Dl

only; depending whether Re D∗l (Cl −Bl) is positive or
negative, 〈wp

e (r)〉 is smaller or larger than the dissipa-
tion rate which would take place for a vanishing screening
length. The screening contribution 〈ws

e (r)〉 presents much
more severe oscillations, since it may alternatively be pos-
itive and negative in space due to the interplay between
the wavenumbers k and β. We shall see below (Sect. 5.3)
that it may here again dominate the other contributions,
so that the material is then cooled down at places.

The total dissipation rate W is obtained from (2.27,
2.28) by evaluating the flux through the interface r = R
of the Poynting vector, itself expressed in terms of the
transverse components of the electric and magnetic field
through (5.17–5.19, 5.6). For a unit incident flux, W is the
absorption cross-section, and it is found to be the sum of
the three contributions

W p
e =

2π

κ5R3

∑
l>1

(2l+1)
Im (−Cl)

|hl (κR)|2 |Cl+Dl−Bl|
2 , (5.25)

W s
e = −

2π

κ5R3

∑
l>1

(2l + 1)

×
Im Dl

|hl (κR)|2 |Cl +Dl −Bl|
2 , (5.26)

Wm =
2π

κ3R

∑
l>1

(2l+ 1)

×
Im

[
− (kR)2

Cl

]
|hl (κR)|2

∣∣∣(kR)
2
Cl − (κR)

2
Bl

∣∣∣2 · (5.27)

By making use of the Wronskian relations (B.3) and of the
integrals (B.5–B.7) given in Appendix B, we can readily
check that the expressions (5.25–5.27) are, respectively,
the space integrals of the contributions (5.22–5.24) to the
local dissipation rate.

Transforming the expressions (5.14, 5.15) by use of
(5.4) and of

1

(κR)3 |hl (κR)|2
= Im Bl (5.28)

(see Eq. B.8), we can also relate the absorption cross-
section W to the eigenvalues

Sle = 1 + 2iAle =
h∗l (κR)

hl (κR)

Cl +Dl −B∗l
Cl +Dl −Bl

, (5.29)

Slm = 1 + 2iAlm

=
h∗l (κR)

hl (κR)

(kR)
2
Cl − (κR)

2
B∗l

(kR)2
Cl − (κR)2

Bl
(5.30)

of the S-matrix, which are the ratios of the outgoing to
the incoming partial waves. Indeed, (5.25–5.27) together
with (5.18, 5.29) yield

W =
π

2κ2

∑
l>1

(2l+1)
[(

1−|Sle|
2
)

+
(

1−|Slm|
2
)]
. (5.31)

We prove in Appendix B the inequalities

Im Bl > 0, Re Bl < 0,

Im Cl <
− (l + 1) Im (kR)

2

|kR|4
< 0,

Im (kR)
2
Cl < 0, 0 < Im Dl <

(l + 1) Im (kR)2

|kR|4
,

0 < Im (kR)
2
Dl < (l + 1) s, (5.32)

whence we can check that

W p
e > 0, W s

e < 0, We = W p
e +W s

e > 0, Wm > 0, (5.33)
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which imply |S| < 1. An alternative check of the positivity
of the dissipation We relies on the fact that this quantity
is the integral (2.23); the electric multipolar contribution

to the angular average of |J|2 at the radius r is given by
(2.22) as:

1

2σ

〈
|Je|

2
〉

= 〈we (r)〉

+
1

2κ5R4
Re

∑
l>1

(2l+ 1) iDl

r2 |hl (κR) (Cl +Dl −Bl)|
2

×
1 + is

1− is

d

dr

{
rjl (iβr)

jl (iβR)

[
jl (kr)

jl (kR)
−

rj′l (iβr)

Rj′l (iβR)

]∗}
.

(5.34)

Note that, as for the plane wall (Eq.(4.1)), the contri-
bution W s

e associated with a finite screening length λ is
negative, whereas the propagative contribution W p

e , which
depends on the screening length λ through the term Dl

in the denominator, may be either larger or smaller than
the quantity We evaluated for λ = 0.

5.3 Possibility of local cooling and overheating

Let us first consider the local dissipation rate (5.22–5.24),
in the limit Im kR� 1, |β| � Im k. Not too deep within
the sphere, for values of r such that Im kr � 1 and such
that jl (iβr) does not differ much from jl (iβR) , the ex-
pressions (5.22–5.24) reduce to:

〈wp
e (r)〉 ∼

Im k2

2 |k|2 κ5R4

×
∑
l>1

(2l+ 1) e−2Im k(R−r)

|hl (κR) (Cl +Dl −Bl)|
2
r2
, (5.35)

〈ws
e (r)〉 ∼ −

1

2κ5R3

×Re
∑
l>1

(2l+1)k∗Dle
−ik∗(R−r)

|hl (κR) (Cl+Dl−Bl)|
2
r2
, (5.36)

〈wm (r)〉 ∼
Im k2

2κ3

×
∑
l>1

(2l+1)e−2Im k(R−r)

|hl (κR)|2
∣∣∣(κR)

2
Bl+ikR

∣∣∣2r2

· (5.37)

As in the case of a plane wall (Sect. 4.3), the screening
contribution (5.36) oscillates and decreases more slowly
than the propagative contributions (5.35) and (5.37) when
we penetrate the sphere, so that we (r) can be negative at
places.

Here again, the phenomenon is especially marked if
s � 1. Assuming the other dimensionless parameters,
ω2µ0εR

2, R/λ and κR to be finite, we then have

Cl ∼
1

ikR
, Dl ∼

l (l + 1)

ω2µ0εR2

λjl (iR/λ)

iRj′l (iR/λ)
, (5.38)

so that |Cl| � |Dl| . Just below the surface of the sphere,
for each l, the ratio of the screening and propagative con-
tributions reads:

〈ws
le (R)〉

〈wp
le (R)〉

∼ −Re (k∗R Dl) . (5.39)

Here the quantity Dl is real and positive; according to
(B.14), it is an increasing function of λ, with the two lim-
its:

Dl ∼
l (l + 1)

ω2µ0εR2

λ

R
, (λ� R) ;

Dl →
l + 1

ω2µ0εR2
, (λ� R) . (5.40)

Thus, under the considered conditions, the ratio (5.39)
is a negative number and its absolute value is large. The
electric to magnetic ratio, which for finite κR is equivalent
to

〈ws
le (R)〉

〈wlm (R)〉
∼ −

1

(κR)2 |Dl −Bl|
2 Re (k∗R Dl) , (5.41)

has also a large absolute value. Thus, the local dissipa-
tion near the surface, including both the electric and
magnetic multipolar contributions, is dominated by the
screening contribution (5.36) at least for s � 1 and fi-
nite ω2µ0εR

2, R/λ, κR. For r not too deep within the
sphere, the use of (5.28) in (5.36) yields the behaviour:

〈w (r)〉 ∼ −
1

2κ2
Re

∑
l>1

(2l+ 1) (Im Bl) k
∗ Dle

−ik∗(R−r)

|Dl −Bl|
2
r2

.

(5.42)

The material lying in the superficial shell of the sphere,
Re k (R − r) < π

4 , is cooled down according to (5.42) under
the effect of the incident e.m. wave. As in Section 4.2, this
is compensated for by an overheating deeper inside.

Actually, after integration over space, the absorption
cross-section (5.25–5.27) can be calculated in the above
limit s � 1, with ω2µ0εR

2, R/λ and κR finite, by ex-
panding Dl in powers of 1/s, using the Bessel equation
(B.1). We thus find:

W p
e ∼

π
√

2

|kR|κ2

∑
l

(2l+ 1) Im Bl

|Dl −Bl|
2 , (5.43)

W s
e ∼ −

π

|kR|κ2

∑
l

(2l+ 1) l (l + 1) Im Bl

|Dl −Bl|
2

×

{
λjl (iR/λ)

iRj′l (iR/λ)
− 1−

j2
l (iR/λ)

j
′2
l (iR/λ)

[
1 +

l (l + 1)λ2

R2

]}
,

(5.44)

where according to (5.32) the curly bracket is a positive
number smaller than 2/l, and:

Wm ∼
π
√

2R2

|kR|

∑
l

(2l+ 1) Im Bl. (5.45)
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As for the plane wall, the screening contribution W s
e , of

order |kR|−2
, is negligible compared to the propagative

contribution W p
e and Wm, of order |kR|−1

, although lo-
cally it is 〈wp

e (r)〉+ 〈wm (r)〉 which is negligible compared
to 〈ws

e (r)〉 . The oscillations in (5.42) cancel one another
upon integration, to the first two dominant orders in |kR| .

5.4 Inhibition of the scattering

The vanishing of the reflection coefficient that we studied
for a plane wall in Section 4.2 has here two possible ana-
logues, the minimization of the scattering, i.e., the vanish-
ing of some scattering amplitude, or the maximization of
the absorption, i.e., the vanishing of some elements of the
S-matrix. Let us begin by searching whether a scattering
amplitude can be cancelled. We can rewrite (5.10, 5.11),
or equivalently (5.29, 5.30), using the wronkian (B.3), as

Ale = −
jl (κR)

hl (κR)

Cl +Dl − B̂l
Cl +Dl −Bl

, (5.46a)

Alm = −
jl (κR)

hl (κR)

(kR)
2
Cl − (κR)

2
B̂l

(kR)
2
Cl − (κR)

2
Bl

, (5.46b)

where we introduced the quantity

B̂l ≡
j′l (κR)

κRjl (κR)
+

1

(κR)2 , (5.47)

which is real. However the inequalities (5.32) imply that

Cl+Dl as well as (kR)2
Cl have a negative imaginary part.

Hence the right-hand sides of (5.46) and (5.47) can never
vanish, and no scattering amplitude can exactly be zero.

Nevertheless, since Im Dl is positive, this discrepancy
between the imaginary parts of Cl+Dl and B̂l in (5.46) is
weaker than for the scattering amplitude A0

le which occurs
when the screening length λ is negligible, and which is ob-
tained from (5.46) by suppressing Dl. We thus expect a
significant effect in case Cl+Dl is nearly real. Let us there-
fore consider a small sphere, such that κR� |kR| � 1.
We have

Bl ∼
−l

(κR)
2 ,

B̂l ≈
l+ 1

(κR)
2 −

1

2l + 3
,

Cl ≈
l+ 1

(kR)
2 −

1

2l + 3
, (5.48)

and hence the amplitudes (5.46) behave for a vanishing
screening length as:

A0
le ∼

(κR)
2l+1

(l + 1)

(2l+ 1)!! (2l − 1)!!

×
(kR)

2 − (κR)
2

l (kR)
2

+ (l + 1) (κR)
2 , (5.49a)

Alm ∼
(κR)2l+1

(2l+ 3)!! (2l+ 1)!!

[
(kR)

2 − (κR)
2
]
. (5.49b)

Neither amplitude can be zero, since their imaginary parts
are positive. Moreover, the magnetic multipolar contri-
butions (5.49b) are small compared to the electric ones
(5.49a). However, if the screening length λ, instead of be-
ing very short, is much larger than the size of the ball, the
condition |βR| � 1 provides Dl ∼ (l + 1) is/ (kR)2

, and
hence the dominant electric multipolar amplitudes (5.46a)
become:

Ale ∼
(κR)2l+1 (l + 1)

(2l + 1)!! (2l− 1)!!

×
Re (kR)

2 − (κR)
2

lRe (kR)
2

+ (l + 1) (κR)
2 · (5.49c)

Thus, if the dielectric constants ε and εi are equal, these
amplitudes approximately vanish for any value of the con-
ductivity, even if s ≡ σ/ωε is large, and for any l. The
cross-sections (5.20, 5.21) thus reduce to their second
term, which for a vanishing screening length was much
smaller than the first one. Small conducting spheres with
a dielectric constant ε ∼ εi illuminated by an e.m. wave
(such that κR � 1 and |kR| � 1) are therefore much
less visible when the screening length is large (λ� R)
than when it is small (λ� R) , as the cross-sections are
multiplied by a factor |l(kR)2 + (l + 1)(κR)2|2. However,
according to an above remark, Ale can never vanish rigor-
ously. We can find its lower bound by expanding Cl and
Dl as

Cl ≈
(l + 1)

(kR)
2 −

1

2l+ 3
−

(kR)
2

(2l + 3)
2

(2l+ 5)
,

Dl ≈
(l + 1) is

(kR)2

[
1−

(βR)
2

l (2l+ 3)
+

(3l + 5) (βR)
4

l2 (2l + 3)2 (2l+ 5)

]
,

and likewise for B̂l. This yields, if we take

εi

ε
≈ 1 +

R2

l (2l+ 3)λ2
−

R4

l (2l+ 3)
2

(2l + 5)λ4
,

the small value for the amplitude Ale:

Ale ∼
is (κR)

2l+5

(2l+ 3)!! (2l + 5)!!

[
1 +

(l + 1) (3l+ 5)

l2s2 (κλ)4

]
· (5.50)

5.5 Enhancement of the absorption cross-section

We now explore the second analogy with Section 4.2 where
we discovered the possibility of suppressing the reflection
on a plane wall, and thus look for the complete absorption
of some partial wave by a sphere. We show below that,
for κR � 1, the 2l-polar electric wave is fully absorbed
when the conductivity, the dielectric constant, the screen-
ing length and the frequency satisfy the two conditions
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(5.60). More generally, for any κ, complete absorption
is expressed by the vanishing of some eigenvalue (5.29),
(5.30) of the S-matrix, that is:

Cl +Dl = B∗l , (Sle = 0) , (5.51)

kRj′l (kR)

jl (kR)
=
κR h′∗l (κR)

h∗l (κR)
, (Slm = 0) . (5.52)

The signs of all the imaginary parts are now the same,
which allows us to expect the occurence of solutions.

In fact, even when λ = 0, a possibility of complete ab-
sorption exists for both electric and magnetic multipolar
partial waves. For instance, for electric dipolar waves with
λ = 0, we can use (B.4) to write (5.51) for l = 1, that is
C1 = B∗1 , as

1

1− kR cotgkR
−

1

(kR)
2 =

1

1 + iκR
−

1

(κR)
2 , (5.53)

a set of two real equations for three real variables. Accord-
ing to (5.32), the solutions satisfy:

1

2
>

κR

1 + (κR)
2 >

2Im (kR)2

|kR|4

=
2s

ω2µ0εR2 (1 + s2)
· (5.54)

For κR � 1, they lie near the zeroes of j1 (z) , i.e., near
the positive solutions ξn of tg ξn = ξn, at values of k,

kR ≈ ξn −
(κR)2

ξn
−

(κR)
4 (
ξ2
n + 1

)
ξ3
n

+ i
(κR)5

ξn
, (5.55)

which correspond to a resonant complete absorption. We
also find, for κR � 1, resonant solutions near the zeroes
of j′1 (z) , at

kR ≈ nπ −
1

nπ
+ i

nπ

κR
, (5.56)

under the conditions κR� nπ � 1 for n.
In the presence of a finite screening length λ, which in-

troduces the term Dl in (5.51), the cancellation of Sle for
given l is expressed as in Section 4.2 by two real equations
for the four real dimensionless parameters κR, ω2µ0εR

2 =
Re (kR)

2
, s = Im k2/Re k2 and R/λ. This opens the

possibility of complete absorption in new situations of
a type different from (5.55) or (5.56). For instance, for
Im kR � 1, Cl is small as 1/ikR. For λ = 0, solving the
equation Cl = B∗l would require in this case that Bl is
small, hence from (B.8, B.9) that κR is large, and there-
fore

B∗l ≈
1

iκR
+

il (l + 1)

2 (κR)
3 −

l (l + 1)

2 (κR)
4 ; (5.57)

we would then find Re k ∼ κ and Im kR ∼
l (l + 1) /2 (κR)

2
, which is small, in contradiction to our

hypothesis. Hence no solution of Sle = 0 with Im κR� 1

Fig. 4. Complete absorption by a sphere, for an incoming elec-
tric multipolar partial wave with small wavelength (κR� 1) .
The eigenvalue Sle vanishes for an internal wavevector k ∼
1+i
2 κ and for a conductivity σ ≡ ωεs, which is drawn as func-

tion of the screening length λ.

can exist for λ = 0. However, if the screening length is
sufficiently large, the term Dl in Cl +Dl = B∗l may com-
pensate for the smallness of the real part of (5.57). Indeed,
if we assume for instance λ� R, we have

Dl ∼
i (l + 1) s

(kR)
2 , (5.58)

and we find for κR� 1, λ� R the solution

s ∼
κR

2 (l + 1)
, k ∼

1 + i

2
κ (5.59)

of Sle = 0.
This solution, for which s � 1 and ω2µ0εR

2 � 1,
is continued towards finite and even small values of λ/R
provided κR remains large; in this more general case it
reads

s ∼
κR

2l (l + 1)

iRj′l (iR/λ)

λjl (iR/λ)
,

k ∼
1 + i

2
κ, (κR� 1) , (5.60)

where the second factor of s is a real positive number
varying from l to R/λ as λ decrease. The dependence on
l and λ is only through the expression of s/κR as long as
κR� 1 (Fig. 4). For smaller values of κR, the solution of
Sle = 0 still exists but deviates from (5.60). Thus the oc-
currence of a non-vanishing screening length opens a new
possibility: for suitably chosen parameters, some or other
electric multipolar incoming partial wave is completely ab-
sorbed by a sphere of semiconductor or electrolyte with a
radius larger than the wavelengths κ−1 and (Re k)

−1
and

with a sufficiently large conductivity.



432 The European Physical Journal B

6 Thin slab

6.1 General equations

We finally consider a slab of semiconductor or ionic con-
ductor, lying in the domain − l

2 < z < l
2 , between two

dielectric half-spaces z < − l
2 and z > l

2 . We wish to
study the reflection and transmission coefficients R and
T for a plane wave with wavevector (κx, 0, κz) issued from
the region z = −∞. As in Section 3.1 a transverse electric
wave will be insensitive to the screening length, so that
we focus on a wave with transverse magnetic polarization,
H = (0,Hy, 0) .

We take advantage of the symmetry z → −z of the
system by solving beforehand the two problems where the
electric field E is either symmetric or anti-symmetric, H
being antisymmetric in the first case, symmetric in the
second. In these two cases, denoted by the indices ±, the
non-vanishing components of the e.m. field, with the con-
vention (3.4), have in the region z > l

2 the form:

Ex± =
κz

κ
E±
(
e−iκzz ± S±eiκzz

)
, (6.1)

Hy± = −
κE±

ωµ0

(
e−iκzz ∓ S±eiκzz

)
= −

κ2

ωµ0κx
Ez±. (6.2)

Since these components satisfy the symmetry properties

Ex± (z) = ±Ex± (−z) ,

Ez± (z) = ∓Ez± (−z) ,

Hy± (z) = ∓Hy± (−z) ,

we obtain ±Ex±,∓Ez± and ∓Hy± in the z < − l
2 region

by changing κz into −κz in (6.1, 6.2). The coefficients
S±, the ratios of the outgoing to the incoming waves for
given q, are the eigenvalues of the S-matrix. The signs
have been chosen in such a way that S+ = S− = 1 for a
uniform dielectric material.

The reflection and transmission coefficients are defined
for an incident TM plane wave, normalized as in (3.6)
according to Ex = (κz/κ)E0eiκzz for z → −∞, with a
normal flux equal to (3.7). The corresponding complete
field has thus the form

Ex=
κz

κ
E0

(
eiκzz +R e−iκzz

)
and Ex=

κz

κ
E0T eiκzz

(6.3)

for z < − l
2 and z > l

2 , respectively. This wave can be
generated as a superposition of a symmetric wave (6.1)
with amplitude E+ = 1

2E0 and an antisymmetric wave

(6.1) with amplitude E− = − 1
2E0. Hence, we shall find

the reflection and transmission coefficients as:

R =
1

2
(S+ − S−) , T =

1

2
(S+ + S−) . (6.4)

We determine S+ and S− by means of the general
method of Section 2.1, while relying on the required sym-
metry properties. The magnetic field for |z| < l

2 , matched
with (6.2) at the interfaces, reads:

Hy+ = b+ sin kzz,

b+ =
κe+

(
S+eiκzl/2 − e−iκzl/2

)
ωµ0 sin 1

2kzl
, (6.5a)

Hy− = b− cos kzz,

b− = −
κe−

(
S−eiκzl/2 + e−iκzl/2

)
ωµ0 cos 1

2kzl
, (6.5b)

with the same definitions (3.2) and (3.3) for the wave num-
bers kz and βz as in Section 3. The charge density, which
satisfies the symmetry property ρ± (z) = ±ρ± (−z) , has
the form

ρ+ = c+ coshβzz , ρ− = c− sinhβzz. (6.6)

We obtain therefrom the propagative and screening con-
tributions to E and J within the slab, by means of (2.13,
2.15):

Ep
x+ =

Jp
x+

σ
=
−b+kz
σ − iωε

cos kzz,

Ep
z+ =

Jp
z+

σ
=

ib+κx
σ − iωε

sinkzz, (6.7a)

Ep
x− =

Jp
x−

σ
=

b−kz

σ − iωε
sin kzz,

Ep
z− =

Jp
z−

σ
=

ib−κx
σ − iωε

cos kzz, (6.7b)

Es
x+ =

Js
x+

iωε
=

ic+κx
εβ2

coshβzz,

Es
z+ =

Js
z+

iωε
=
c+βz

εβ2
sinhβzz, (6.8a)

Es
x− =

Js
x−

iωε
=

ic−κx
εβ2

sinhβzz,

Es
z− =

Js
z−

iωε
=
c−βz

εβ2
coshβzz. (6.8b)

Expressing that Jz± vanishes at the interfaces provides us
with c± in terms of b±, whence, using (6.5), in terms of
S±:

c+ =
−σ

σ − iωε

κxκβ
2

ω2µ0βz
E+

S+eiκl/2 − e−iκl/2

sinh 1
2βzl

, (6.9a)

c− =
σ

σ − iωε

κxκβ
2

ω2µ0βz
E−

S−eiκl/2 + e−iκl/2

cosh 1
2βzl

· (6.9b)

Finally the continuity of Ex across the interfaces
yields, by combination of (6.1, 6.5, 6.7, 6.8) and (6.9),
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R = e−iκzlC
2 +D2 −B2 + 2iCD (cotg kzl cothβzl − cosec kzl cosechβzl)

(C+ +D+ −B) (C− +D− −B)
· (6.14)

T = e−iκzl−2B (iC cosec kzl +D cosech βzl)

(C+ +D+ −B) (C− +D− −B)
· (6.15)

the equations:

B
S++e−iκzl

S+−e−iκzl
= iC cotg

1

2
kzl+D coth

1

2
βzl,(6.10a)

B
S− − e−iκzl

S− + e−iκzl
= iCtg

1

2
kzl +D tanh

1

2
βzl, (6.10b)

where we introduced the same notations

B ≡
iκzκx
κ2

, C ≡
−ikzκx
k2

, D ≡
iσκ3

x

ωεk2βz
(6.11)

as in (3.14–3.16). We thus have determined the S-matrix
in the same form as (5.29) for a sphere, namely,

S± = ±e−iκzl
C± +D± −B∗

C± +D± −B
, (6.12)

where we introduced

C+ ≡ iC cotg
1

2
kzl, D+ ≡ D coth

1

2
βzl, (6.13a)

C− ≡ −iCtg
1

2
kzl, D− ≡ D tanh

1

2
βzl, (6.13b)

and where we noted that B = −B∗. (We establish in Ap-
pendix C.1 some inequalities satisfied by C± and D±.)
Hence, we obtain through (6.4) the reflection and trans-
mission coefficients:

(see equations (6.14) and (6.15) above)

For a transverse electric incident wave, we would have
obtained:

S+ = e−iκzl
k−1
z cotg 1

2kzl + iκ−1
z

k−1
z cotg 1

2kzl − iκ−1
z

,

S− = −e−iκzl
−k−1

z tg 1
2kzl+ iκ−1

z

−k−1
z tg 1

2kzl− iκ−1
z

. (6.16)

This result has the same form as (6.12), within the re-
placement of C by −iκx/kz, of B by iκx/κz, and the sup-
pression of the terms in D. The situation is similar to
the transverse electric fields for a sphere, which provided
(5.30) as S-matrix elements. As we already noted in Sec-
tions 3.1 and 4.1, the screening plays no rôle in this case
since there appears anyhow no charge density in the con-
ductor. We readily check that (6.12) and (6.16) coincide
for κx = 0, when the incidence is perpendicular to the
slab.

We can also check that S+ = S− = 1 if the material
of the slab is replaced by the surrounding material, in
which case βz = ∞, D = 0, kz = κz, B = −C. As

a further check, consider the limit of a thick slab, with
Im kzl� 1,Re βzl� 1. The S-matrix (6.12) reduces to:

S+ ∼ −S− ∼ e−iκzl
C +D −B∗

C +D −B
∼ R. (6.17)

Hence the transmission coefficient T vanishes and the
same expression (3.13) as for a plane wall is recovered
for the reflection coefficient R, within a phase factor due
to the fact that the wave is reflected here on the interface
z = − l

2 .

6.2 Energy exchanges

Since the local and global energy exchanges behave here
as for a plane wall (Sect. 3.3) or for a sphere (Sect. 5.2),
we shall not dwell upon them. The fields are obtained
by inserting (6.12) into the equations (6.1, 6.2, 6.5–6.7).
The resulting Poynting vector and the local dissipation
rate are similar to those found for the plane wall, except
for additional oscillations associated with the interference
between waves propagating in both directions ±z.

Whereas an incident wave of the form (6.3) generates
a local dissipation rate and energy transfers within the
conducting material which involve cross terms between the
symmetric and antisymmetric contributions to the e.m.
field, the total power W yielded by the field to matter can
be decomposed as a sum of two terms W+ and W− arising
from these two contributions. If W is defined as the total
dissipation per unit area of the slab for a unit incident
flux perpendicular to this slab, we find after integration
over space, as expected from (6.4, 6.12),

W = 1− |R|2 − |T |2 = W+ +W−, (6.18)

W± =
1

2

(
1− |S±|

2
)

=
2 |B| Im (−C± −D±)

|C± +D± −B|
2 · (6.19)

According to equations (C.5, C.7, C.10, C.12) estab-
lished in Appendix C.1, we check that W+ and W− are
positive, as well as their first term, the only one which
survives when λ = 0, that is, when D = 0. Their second
term, proportional to −Im D±, is however negative ac-
cording to (C.14), and it substracts out from the first one,
in the same way as W s did for a wall (Eq.(4.1)) or W s

e for
a sphere (Eq.(5.33)).

6.3 Enhancement of the transparency

As in Section 5.4 where we saw that a sufficiently large
screening length λ can significantly reduce the scattering
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cross-section of a sphere, we look whether the transmission
coefficient |T |2 of a slab can here become close to 1.

In the limit of a thin slab where |kzl| � 1, all other
dimensionless parameters being finite, we have |C−| �
|B| � |C+| . Hence, if we first consider perfect screening,
with λ = 0, D = 0, we find from (6.15) to lowest order in
|kzl| a transmission coefficient

T0 ≈ e−iκzl

[
1−

i

2
kzl

(
B

C
+
C

B

)]
. (6.20)

The corresponding attenuation

1− |T0|
2 ∼ −Im kzl

(
B

C
+
C

B

)
=

(
κz

κ2
+

κ2κ2
x

κz |k|
4

)
lIm k2 (6.21)

is thus proportional to the thickness l. However, for finite
λ, the expression (6.15) reads, to lowest order in |kzl| ,

T ≈ e−iκzl

[
1−

i

2
kzl

(
B

C − i
2kzl D coth 1

2βzl

+
C + 2i (kzl)

−1
D tanh 1

2βzl

B −D tanh 1
2βzl

)]
. (6.22)

In the resulting attenuation, expanded in powers of |βzl| ,
the first term of (6.22) yields to lowest order

1− |T |2 ∼
κz

κ2 (1 + s2κ4
xλ

4)
lIm k2 +O

(
l2
)
, (6.23a)

where s ≡ σ/ωε; the second term provides a contribution,

κ4

4κ2
z

∣∣∣∣Re k2
z

Re k2

∣∣∣∣2 l2 +
κ2κ4

x

6κz |k|
4 l

3Im k2, (6.23b)

which does not depend on λ, but which has the same or-
der as terms in l2 that we have neglected in the expansion
of T in powers of |kl| . The first part (6.23a) strongly de-
creases with the screening length. In the considered limit
|kzl| � 1, λ� l, we see from (6.23) that the attenuation

1− |T |2 is not only much smaller than (6.21), but that it
is moreover proportional to the square l2of the thickness
rather than to the thickness l itself.

In the limit of a thick slab, Im kzl � 1, C+ and C−
are approximately equal to C. The expression (6.15) of T
provides, for a perfect screening where λ = 0, D = 0,

T0 ∼
−4BCe−iκzl

(C −B)
2 eikzl =

4κ2κzk
2kze

−iκzl

(κzk2 + kzκ2)
2 eikzl, (6.24)

which shows as expected that the transmitted power is
exponentially small as e−2Im kzl. However, for a finite D
and a large screening length, λ � l, the second term
of (6.15) dominates since |βzl| � 1, and we obtain,

using D/D+ ∼ D/D− ∼
1
2βzl,

T ∼
−2BD e−iκzl

[2D + βzl (C −B)]
[
C −B + 1

2D βzl
]

∼
κzk

2 e−iκzl

κzk2 + kzκ2
· (6.25)

Remarkably, since l enters (6.25) only through a phase
factor, the attenuation no longer depends on the thickness
l of the slab as long as l remains smaller than λ. The delo-
calization effect produced by the lack of screening allows
the wave to pass easily through the slab. The expression
(6.25) shows that |T |2 can reach values significant com-
pared to 1, so that the occurrence of a screening length
much larger than the skin depth can increase the trans-
parency by many orders of magnitude.

This strong discrepancy between the two transmission
coefficients, T0 in the regime (Im kz)

−1 � l, λ = 0, and

T in the regime (Im kz)
−1 � l � λ, can be traced back

to their expression (6.4) in terms of the S-matrix. For
D = 0, we obtain from (6.12), in the limit Im kzl � 1
where C+ ∼ C− ∼ C,

S+ ∼ −S− ∼ e−iκzl
C +B

C −B
∼ R0. (6.26)

Hence, from (6.4), the transmission coefficient T0 is ex-
tremely small while the reflection coefficient R0 is nearly
equal to its value for a bulk plane wall, as expected. The
absorption (6.18), (6.19), which reduces to

W0 ∼
4Re BC

|C −B|2
∼ 1− |R0|

2
, (6.27)

may be small, especially in the metallic regime s � 1
where |C| � |B| . However, if λ� l, and if |D| is compa-
rable to |B| and |C| , we have |D+| � |D| � |D−| , and
hence:

S+ ≈ e−iκzl

(
1 +

B

D
βzl

)
, S− ∼ e−iκzl

C +B

C −B
· (6.28)

In the symmetric channel, S+ becomes nearly unitary,
while S− is practically unchanged. Actually, the weakness
of the screening allows for penetration of the field through
the slab, far beyond the skin. We find from equations (5.5–
5.9) that H,Ep and Jp are negligible within this region(
l
2 − |z|

)
Im kz � 1, while Es is dominated by its sym-

metric contribution

Es
x+ ∼ E0

κz
κ

e−iκzl/2 coshβzz,

Es
z+ ∼ −iE0

κzβz

κκx
e−iκzl/2 sinhβzz, (6.29)

and the current J ∼ Js = iωεEs = iωβ−2∇ρ is non-
dissipative. The absorption W ∼ 1

2W0 is mainly due to

the antisymmetric part of the wave, since |S+|
2 ∼ 1, and

the symmetric part passes through the slab with a phase-
shift, but nearly without absorption. The reflection and
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transmission coefficients are given by (6.4) as:

R ∼ e−iκzl
C

C −B
, T ∼ e−iκzl

B

B − C
; (6.30)

we recover for T the significantly large value (6.25), owing
to the difference which now occurs between the symmet-
ric and antisymmetric parts of the wave. The reflection
coefficient |R|2 may be smaller or larger than |R0|

2
, de-

pending on the sign of κzκ
−2−2Re kzk

−2. A simultaneous
increase of both coefficients |T |2 > |T0|

2
and |R|2 > |R0|

2

is made possible because the total absorption, W = 1
2W0,

is divided by 2.

6.4 Suppression of the reflection or of the transmission

Among the new properties brought in by the finiteness
of the screening length, we shall explore the possibility
of cancelling either the reflection or the transmission co-
efficient R or T. Note first that T can never vanish for
a material with perfect screening (λ = 0) , although it
is exponentially small for a slab with increasing thick-
ness as soon as the conductivity is non-zero. However, for
λ 6= 0 (or D 6= 0) we see from (6.15) that T vanishes when

iC sinhβzl +D sinkzl = 0. (6.31)

In order to discuss this equation, we introduce the five
real positive dimensionless parameters s, t, u, v, w which
enter the problem:

s ≡
σ

ωε
, t ≡

2κzκx
κ2

, u ≡
ω2µ0ε

κ2
x

, v ≡
1

λ2κ2
x

, w ≡ κxl.

(6.32)

The first four (with t 6 1) are the same as in Section 4, and
the last one characterizes the thickness of the slab. The
various quantities involved in the equations are expressed
in terms of them as:

kzl = w
√
u (1 + is)− 1,

βzl = w
√
v (1− is−1) + 1, (6.33)

B =
it

2
, C =

−i
√
u (1 + is)− 1

u (1 + is)
,

D =
is

u (1 + is)
√
v (1− is−1) + 1

. (6.34)

The equation T = 0 then reads:

s
sinw

√
u (1− is)− 1√

u (1 + is)− 1
= i
√
v (1− is−1) + 1

× sinhw
√
v (1− is−1) + 1, (6.35)

a set of two real equations for the four positive variables
s, u, v, w; the parameter t ≡ sin 2θi does not appear here.

We show the existence of solutions for (6.35) by deter-
mining, in the limiting case s� 1, the variables v and w

in terms of s and u, supposed to be given, with us � 1.
The argument of the complex number sin kzl should then
be 3π/4, which is expressed by

tg χl ∼ − tanhχl, cosχl > 0, χl ≡ w

√
us

2
, (6.36)

where χ is the wavevector Im kz . We find a sequence of
values of χl, each one lying between 2nπ − π

4 and 2nπ,
with n > 1, which for large n tend to 2nπ − π

4 . Actually,
even for n = 1, χl is fairly large and lies close to 2nπ− π

4 ,
since it can be expanded as:

χl ≡ Im kzl ≡ w

√
us

2
≈ 2nπ −

π

4
+ e−4nπ+π/2. (6.37)

Writing now that the modulus is the same on both sides
of (6.35), we should satisfy:

√
v + 1 sinhw

√
v + 1 ∼

√
2s

u
cosχl shχl

∼
1

2

√
s

u
e2nπ−π/4. (6.38)

This equation determines v, provided the right-hand side
is larger than sinhw, i.e.,

1

2

√
s

u
e2nπ−π/4 > sinh

(√
2

us

(
2nπ −

π

4

))
. (6.39)

We thus find a set of solutions of T = 0, labelled by n and
expressed by (6.37, 6.38), for given s � 1 and given u,
provided u is not smaller than the bound given by (6.39).

An expansion of (6.35) for s� 1 reveals that the con-
dition T = 0 cannot be satisfied if s is too small. The
solutions obtained for s � 1 thus cannot be continued
down to s = 0.

The cancellation of the transmission coefficient T ap-
pears as a kind of resonance effect, which is made possible
only by the finiteness of the screening length. It may occur
for a wide range of values of the parameters s and u, the
parameter t which characterizes the outside medium re-
maining arbitrary. For s� 1, in which case the wavenum-
ber χ equals the skin depth, the phenomenon requires a
tuning of both the wavelength, through (6.37), and the
screening length, through (6.38).

Likewise, the cancellation of the reflection coefficient
(6.14) is impossible for λ = 0 and σ 6= 0, since this is
expressed by the same condition C2 = B2 as for a plane
wall. While C = B has no solution, C = −B would pro-
vide only real values for kz requiring σ = 0, namely the
trivial one kz = κz and the Brewster angle kz = κ2

x/κz.
However, the additional terms involving D in the numera-
tor of (6.14) can now allow for the cancellation of R when
the conductivity is finite. The equation to be solved is
(C+ +D+) (C− +D−) = B2. We have solved this equa-
tion in Section 4.2 in the limit |kzl| � 1, |βzl| � 1, where
it reduces to C + D = −B, and nothing prevents R to
vanish for a thinner slab.
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6.5 Suppression of both the reflection and transmission

Since the reflection and transmission coefficients depend
on the five parameters (6.32), we may look for their simul-
taneous extinction, in which case the wave is completely
absorbed. Requiring that R = T = 0 is also expressed, on
account of (6.4), by the cancellation of both S+ and S−.
This condition is in turn expressed, using (6.12), by:

C+ +D+ = C− +D− = −B. (6.40)

The imaginary parts of all these three quantities are neg-
ative, so that there is no a priori impossibility. By using
the definitions (6.13) we can check that the first equation
(6.40) is equivalent to (6.31). We can further symmetrize
the remaining condition as C+ +C− +D+ +D− = −2B,
that is,

iC cotg kzl +D cothβzl = −B, (6.41)

which reads in terms of the parameters (6.32):

i
√
u (1 + is)− 1 cotg w

√
u (1 + is)− 1

−
s cothw

√
v (1− is−1) + 1√

v (1− is−1) + 1

=
tu

2
(1 + is) . (6.42)

By combining (6.31) and (6.41) we also obtain:

e(ikz−βz)l =
C +D +B

C +D −B
,

e(ikz+βz)l =
C −D +B

C −D −B
· (6.43)

The four real equations for s, t, u, v, w which express that
the wave is completely absorbed are thus written equiva-
lently as (6.40), or as (6.31, 6.41), or as (6.35, 6.42), or as
(6.43).

As we did for the cancellation of T alone, let us study
the solution of these equations in the region s� 1. Apart
from the equalities (6.37, 6.38) which give the solution of
(6.31) or (6.35), we have to solve (6.42), which reduces for
s� 1 to:

1
√

ius
cotg w

√
ius+

1

u
√
v + 1

cothw
√
v + 1 ∼ −

it

2
·

(6.44)

Since Im w
√

ius = χl, given by (6.37), is a rather large
quantity, at least equal to the number 5.5, we can replace
cotg w

√
ius by −i. The imaginary and the real parts of

(6.44) then yield, respectively,

t

2
∼

1
√

2us
, cothw

√
v + 1 ∼

√
u (v + 1)

2s
· (6.45)

Multiplication by (6.38) shows that

coshw
√
v + 1 ∼

1

2
√

2
e2nπ−π/4 (6.46)

is large, even for n = 1, and hence we get from (6.45) and
(6.46), within exponential corrections,

u (v + 1)

2s
∼ 1, w

√
v + 1 ∼ 2nπ −

π

4
−

1

2
ln 2. (6.47)

We can check that the requirement (6.38) is satisfied. Al-
together, combining (6.37, 6.44) and (6.47), and noting
that v is large, we find for s� 1:

t ∼
1
√
s

√
1− η, u ∼

2

1− η
, v ∼ s (1− η) ,(6.48)

w ∼
2nπ − π

4√
s

√
1− η, η ≡

ln 2

4nπ − π
2

· (6.49)

At least in the limit of large s, we have thus ob-
tained for each s and for each n > 1 a set of param-
eters tn (s) , un (s) , vn (s) , wn (s) approximately given by
(6.48) such that the wave is neither reflected by the slab
nor transmitted through it. The term η is small, since we
have η ∼ 0.063 for n = 1. The first three equations (6.48)
characterize (for σ � ωε) the incidence angle θi and the
properties of the two materials which should be realized
to produce complete absorption, namely:

sin 2θi ≡
2κzκx
κ2

∼

√
ωε

σ
,

ω2µ0ε ∼ 2κ2
x, λ2 ∼

2

ωµ0σ
· (6.50)

In this regime the incidence should be either close to nor-
mal, with θi ∼ 1

2

√
ωε/σ and hence from (4.27) 2σ ∼ ωεi,

or close to tangential, with π
2 − θ

i ∼ 1
2

√
ωε/σ and hence

ε ∼ 2εi; in the first case, εi/ε ∼ 2σ/ωε should be large.
The conditions (6.50) imply that k ∼ kz and that all quan-
tities

λ−1 ∼ βz ∼ Re kz ∼ Im kz ∼ χ, χ = κx

√
σ

ωε
(6.51)

are approximately equal. This approximate equality be-
tween the screening length and the skin depth clearly shows
that complete absorption requires a close fit between prop-
agative and screening contributions. Finally, the last equa-
tion, (6.49), namely

χl ∼ 2nπ −
π

4
, (6.52)

expresses a resonance condition that should be satisfied
by the thickness l of the slab to ensure the cancellation of
both R and T.

Note that, to lowest order in 1/s, the conditions (6.45)
or (6.48) imply:

t ∼

√
v

s
, u ∼

2s

v
· (6.53)

We had encountered these behaviors of t and u in the end
of Section 4.2 and in Appendix A (Eq. (A.33)), when we
looked for complete absorption by a wall for given s and
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v, in the regime s � 1, v � s2. We recover here these
same equations because (6.41) reduces approximately to
C + D ∼ −B, the very condition which was studied in
Section 4.2 to express the extinction of the reflection from
a wall. We must however satisfy here the additional con-
straint v+ 1

2 ' s, which is represented asymptotically by a
straight line with the slope 1 on the graph of Figures 1 and
2, not to speak of the condition (6.52) on the thickness.

When s becomes no longer very large, the above so-
lutions of (6.35, 6.42) can be continued as sets of func-
tions tn (s) , un (s) , vn (s) , wn (s) labelled by the index
n = 1, n = 2, ..., provided s, t, u, v, w remain positive and
t less than 1. We write in Appendix C.2 a convenient ap-
proximate form (C.16, C.17) for the equations (6.35, 6.42),
and exhibit a single equation (C.21) for vn (s) , from which
tn (s) , un (s) and wn (s) are given explicitly by (4.23, 4.24)
and (C.22), respectively. We show there that the condition
which restricts the domain of variation of s is the positivity
of v. For each n, s ≡ σ/ωε should thus be larger than some
number sn close to 1 (Eq. (C.37)), and the function vn (s) ,
where v ≡ 1/λ2κ2

x, grows from 0 to ∞, nearly linearly as
s−sn, when s varies from sn to∞. The resulting function
un (s) , where u ≡ ω2µ0ε/κ

2
x, decreases from about 4 to

2, while tn (s) , where t ≡ sin 2θi, decreases from about
1
2 to zero (as s−1/2), and wn (s) , where w ≡ κxl, starts
from a value of order nπ, reaches a maximum and tends
to zero proportionally to s−1/2. These results are plotted
in Figure 5, which represents the outcome of a numerical
solution of equations (6.35, 6.42). We derive analytically
in Appendix C.2 the expansions of the solutions for large
s (Eqs. (C.24–C.32)) and for s close to its lower bound sn
(Eqs. (C.37–C.43)).

We have also estimated, as functions of s, the values
of the wavevectors kz and βz for which complete extinc-
tion of the reflected and transmitted waves takes place.
They are represented by Figure 6, and their expansions
are expressed by (C.33, C.34) for large s, and by (C.44–
C.48) near the lower bound sn of s. The dynamical screen-
ing length β−1

z is nearly real at both ends of the interval.
While Re kz, Im kz and Re βz are nearly equal for large
s, these quantities behave differently as s decreases down
to sn: the first one, Re kz, slightly increases and passes
through a maximum, whereas the last two, Im kz and
Re βz, decrease by about a factor 2.

When R = T = 0, the trigonometric or hyperbolic
functions which enter the expression (6.15) of the trans-
mission coefficient T thus reach their largest moduli for
the branch n = 1, corresponding to the thinnest possible
slab, and for s = s1 ' 1.28, corresponding to the largest
possible frequency ω = 0.78σ/ε such that the phenomenon
may take place. These values are

|cosec kzl| ' 0.08, |cosech βzl| ' 0.16, (6.54)

but the numbers are much smaller for lower frequencies
or for higher-order resonances (n > 2) . Since anyhow |T |2

is small in the range of parameters where we expect R
and T to vanish, the best conditions under which the ex-
tinction R = T = 0 might be exhibited experimentally
are thus associated with n = 1 and with s slightly larger

than 1.28, or ω slightly lower than 0.78σ/ε. The other
parameters, given by v1 (s) , u1 (s) , w1 (s) and t1 (s) (Eqs.
(C.39–C.43)), should be such that κxλ is large, that κx
lies close to 0.5ω

√
µ0ε, that κxl lies close to 2.5, and that

t lies close to 0.5. The latter condition means that either
the incidence angle θi is close to π

12 and εi/ε (given by

(4.27)) is close to 3.3, or that θi is close to 5π/12 and εi/ε
is close to 1/4.

7 Summary and conclusions

We have studied the propagation of electromagnetic waves
in systems, one component of which is a material with a
finite screening length such as a semiconductor or ionic
conductor. We relied on a simple model where the current
density

J = σE−D∇ρ (7.1)

contains, in addition to the ohmic contribution, a diffusion
term proportional to the gradient of the charge density.
The diffusion coefficientD is related to the static screening
length λ by D = σλ2/ε. Although this model is crude, it
is expected to be realistic at sufficiently low frequency,
and it gives rise to several interesting predictions. The
main new feature brought in by the additional term is non-
locality. Indeed, while the displacement field defined by
D ≡ εE + iω−1J is, for a metal where λ = 0, proportional
to the electric field at the same point, it is related here to
the electric field by:(

1−
iσλ2

ωε
grad div

)
(D−εE) =

iσ

ω
E, (7.2)

an equation obtained by using the conservation law divJ =
iωρ in (7.1) to eliminate ρ. Maxwell’s equation ω2µ0D =
curl curl E then leads to the simple standard equations
divD = 0,∇2D + k2D = 0, where k ≡

√
ω2µ0ε+ iωµ0σ

is the usual complex wavenumber. However, extracting E
from D raises here intractable questions. On the one hand,
(7.2) does not yield a unique solution for E when D is
given. On the other hand its solutions are non-local. This
is a nuisance for problems such as ours, since dealing with
interfaces requires the use of boundary conditions for local
quantities. A similar difficulty is currently encountered for
spheres having a spatially dispersive dielectric constant or
for metallic ones in the optical regime [2–6].

In this paper we have overcome this difficulty by in-
creasing the number of basic fields, a standard technique
to replace non-local field theories by local ones. In particle
physics or in statistical mechanics, a new particle or quasi-
particle with its own simple propagator is often introduced
to account for a complex structure in the original prop-
agator. In particular the various kinds of quasiparticles
which occur in solid state or in plasma physics can be in-
troduced as poles in the propagators for one or for several
true particles, and their own propagators are simpler. Here
we rely likewise on field equations, not only for the electric
or magnetic field itself as usual, but also for a scalar field



438 The European Physical Journal B

Fig. 5. Complete absorption by a slab. (i) Both the transmission and the reflection coefficients vanish when the four parameters
t ≡ sin 2θi (where θi is the incidence angle), u ≡ ω2µ0ε/κ

2
x = ε/εi sin θi, v ≡ 1/λ2κ2

x and w ≡ κxl (where l is the thickness of
the slab) take in terms of s−1 ≡ ωε/σ the values which are represented here for the first two branches, n = 1 (full lines) and
n = 2 (dashed lines). The variables s−1, t, u and w have a finite range, in particular s > 1.28 for n = 1, s > 1.13 for n = 2.
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Fig. 6. Complete absorption by a slab. (ii) The normal com-
ponents kz and βz of the complex wavevectors k and β for
which complete absorption takes place are drawn as functions
of s−1 ≡ ωε/σ, for the first branch n = 1 of solutions. The
transverse component κx is represented by the curve w

(
s−1
)

of Figure 5.

describing the charge density. Actually, due to the gradi-
ent in (7.1), the partial differential equation for E alone
would be of fourth-order, whereas the procedure that we
described in Section 2.1 relies on two second-order usual
Helmholtz field equations, one for the vector field H with
the wavevector k (Eq. (2.8)), the other for the scalar field

ρ with a dynamical screening length λ
(
1− iωεσ−1

)−1/2

(Eq. (2.10)). This neatly separates the two characteristic
lengths of the problem, which play here the same rôle as
the masses of elementary particles in field theory. Accord-
ingly E and J are separated as a sum of two parts (which
for J do not coincide with the two terms in (7.1)). The
first one,

Ep =
1

ε+ iσω−1
D =

1

σ
Jp =

1

σ − iωε
curl H, (7.3)

has the usual propagative form. The second one,

Es =
1

iωε
Js =

λ2σ

ε

1

σ − iωε
∇ρ, (7.4)

arises from the finite size of the screening length λ. The
contribution Js to the current describes the motion of the

screening charges, located within a distance λ from the
interfaces, whereas the characteristic distance for the con-
tribution Jp is the usual skin depth. The boundary condi-
tions are implemented by expressing the continuity at the
interfaces of the tangential components of H and E and
the vanishing of the normal component of J, in agreement
with the absence of a surface charge. The propagative and
screening contributions are coupled by these boundary con-
ditions, although they satisfy independent field equations.

We have studied a few elementary geometries, for
which a polarized plane wave issued from a dielectric re-
gion impinges on a piece of conductor with a finite screen-
ing length. In the three cases considered, an explicit so-
lution was obtained by separation of variables, and a re-
markable structure, always the same, emerged for the S-
matrix which relates the outgoing to the incoming waves.
For a plane wall, S is identified with the reflection coef-
ficient; for a sphere, it is related through (5.29, 5.30) to
the scattering amplitudes and hence to the cross-sections
(5.20, 5.21); for a plane slab, it is related through (6.4)
to the reflection and transmission coefficients. In all three
cases, the eigenvalues of S were cast (Eqs. (3.13, 5.29, 5.30,
6.12)) into the form

S = eiΦC +D −B∗

C +D −B
, (7.5)

which clearly separates the parameters governing the be-
haviour of the wave. The phase factor eiΦ and the term
B depend only on the wavevector in the external dielec-
tric medium (Eqs. (3.14, 5.16, 6.11)). The term C depends
only on the wavenumber k in the conductor, and not on
the intensity of screening (Eqs. (3.15, 5.12, 6.13)). Finally
k2D is merely a function of the dynamical screening length

λ
(
1− iωεσ−1

)−1/2
; it is given by (3.16, 5.13, 6.13). It van-

ishes for λ = 0, and also for waves with transverse electric
polarization, both for planar and spherical geometries; in
this case, the currents induced by the wave have no diver-
gence and thus no screening charge appears. Each element
Φ,B,C,D of (7.5) depends on the geometry, and they al-
ways satisfy the inequalities

Im B > 0, Im (−C) > Im D > 0,

Im k2C < 0 < Im k2D. (7.6)

The power dissipated by each partial wave within the
medium is given in all three cases by:

W = 1− |S|2 =
4Im B (−C −D)

|C +D −B|2
(7.7)

(Eqs. (3.24, 5.31, 6.19)). The inequalities (7.6) ensure that
it is positive, and also imply that the term D in the nu-
merator of (7.7) contributes to reduce the absorption rate.
The screening length λ, however, also occurs in the denom-
inator of (7.7) through D, and this occurrence may either
enhance or reduce the absorption. We have discussed in
detail the interplay of these two occurrences of D and
their influence on the overall dissipation rate in the case
of a plane wall (Sect. 4.1).
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The presence in the S-matrix (7.5) of the two terms
D, which arise from the finiteness of the screening length,
has remarkable consequences. Several effects, which are
forbidden for metal–dielectric interfaces, become possible
when the screening becomes imperfect.

A first class of such unusual phenomena are related to
a possible enhancement of the absorption, which may even
become complete. Namely, for some values of the physical
and geometrical parameters, some eigenvalues (7.5) of the
S-matrix may vanish. This is expressed by the possibility
of finding solutions to the equation C +D = B∗, whereas
the equation C = B∗ which would arise for λ = 0 never
has solutions for a metal–dielectric interface in the geome-
tries considered above. We have studied three examples of
such effects. We have first seen (Sect. 4.2) that the re-
flection coefficient from a semiconducting plane wall may
vanish for a TM wave with appropriate incidence and fre-
quency, for suitably chosen dielectric constants, conductiv-
ity and screening length (Figs. 1 and 2). In contrast, it is
well known that a metallic plane wall (with λ = 0) always
reflects partly any incident wave. Similarly we have shown
that for a spherical semiconductor or ionic conductor em-
bedded in a dielectric medium the absorption cross-section
(5.31) may reach its largest possible value corresponding to
Sle = 0 for some incoming multipolar electric partial wave.
This wave is thus fully captured (Sect. 5.5, Eq. (5.60) and
Fig. 4). Finally, an effect which we find even more surpris-
ing is the possibility of complete absorption of a TM wave
by a slab (Sect. 6.5): both the reflection and the transmis-
sion coefficients can vanish for some set of physical and
geometrical parameters shown by Figures 5 and 6. In the
limit σ � ωε, this effect requires in particular the screen-
ing length to lie close to the skin depth, and the thickness
of the slab to satisfy a resonance condition.

A second class of effects generated by the finiteness of
the screening length, and which may take place for other
ranges of the parameters, correspond to a possible reduc-
tion of the absorption. The reflection from a plane wall
is thus significantly enhanced by an imperfect screening
for large σ/ωε, all other dimensionless parameters being
finite (end of Sect. 4.1). We have also shown that a small
sphere scatters much less the e.m. waves when the screen-
ing length is larger than its radius than when it is smaller
(Sect. 5.4). Likewise, the transparency of a thin slab in-
creases with λ (Sect. 6.3). If the slab is thinner than the
skin depth and the screening length, we saw that its trans-
parency is not proportional to its thickness as usual but
to the square of its thickness (Eq. (6.23)). If on the other
hand it is thicker than the skin depth, the transmission
coefficient, which is exponentially small when λ = 0, may
increase by many orders of magnitude when λ becomes
larger than the thickness of the slab, all other parameters
being kept fixed; its value (6.25) is then nearly indepen-
dent of the thickness.

A last type of effects are associated with local heat
transfers between the wave and the charge carriers. We
have shown in Section 2.2 that both the Poynting vec-
tor and the local dissipation rate w(r) = 1

2Re E · J∗ are
here the sum of two contributions, the normal dissipative

one wp(r) which is everywhere positive, plus a cross-term
ws(r) = 1

2Re (Ep · Js∗ + Es · Jp∗) between the propaga-
tive and screening contributions to E and J. This second
term oscillates in space, due to the fact that Ep,Jp on
the one hand, Es,Js on the other hand propagate with
different wavenumbers. In some circumstances, illustrated
by Figure 3, the amplitude of these oscillations may be
larger than the ordinary dissipative term wp(r) . Then,
at places where ws(r) < −wp(r) , energy is pumped on
average from the carriers by the field, while energy is re-
leased by the field in the regions where w(r) is positive.
We have discussed in Sections 2.2 and 4.3 why it is not
unreasonable to expect such an effect. In particular, we
predicted for a plane wall (Sect. 4.3) and for not too small
a sphere (Sect. 5.3) that for σ � ωε and λ larger than
the skin depth the conductor should be cooled by the wave
just below the interface, and overheated further inside, at
a distance of the order of the skin depth. In these circum-
stances the Joule heat is expected to be small compared
to these odd energy transfers.

Although we gather from discussions with experimen-
talists that some of these effects might have already been
seen, the influence of a finite screening length on the prop-
agation of electromagnetic waves near interfaces does not
seem to have been systematically investigated by exper-
iments. Admittedly, our predictions rely on a very crude
model, the validity of which may be questioneḋ. In par-
ticular, in our study of thermal effects, we have disre-
garded the heat conduction, focusing only on the energy
exchanges between the e.m. wave and the charge carriers.
This may render the observation of the cooling of the car-
riers difficult. Nevertheless our basic constitutive equation
(7.1) should hold at sufficiently low frequencies, such that
ωτ � 1.

Finally, as our purpose was merely exploratory and
theoretical, we have left all the parameters free to vary.
Many of the effects predicted here require, however, spe-
cific constraints on these parameters. For instance, materi-
als for which the screening length λ is sizeable cannot have
a very large conductivity σ, since the diffusion coefficient
σλ2/ε, which is of the order of the product of the mean
free path and the thermal velocity of carriers, cannot take
values varying over a very wide range. If then the condition
σ � ωε that we encountered on several occurrences should
hold, experiments should be performed at low frequency.
Moreover, we saw that some effects occur only if the pa-
rameters are adjusted in a particular manner. In partic-
ular, the slab problem depends on five dimensionless pa-
rameters, and total absorption may take place only if they
are related to one another by four equations (Sect. 6.5).
We have even seen (end of Sect. 6.5) that the best con-
ditions for detecting the simultaneous cancellation of the
reflection and the transmission coefficients require rather
well-defined values for all five dimensionless parameters.
While the frequency and the geometrical parameters, that
is, the incidence angle and the thickness of the slab, can
easily be varied, the physical parameters, namely the di-
electric constants of the two media, the conductivity and
the screening length cannot be chosen at will. Hopefully,
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the large variety of existing materials and the possibility
of controlling some of their properties should render the
experiments feasible.

Appendix A: Vanishing of the reflection
coefficient

A.1. Solution of equations (4.21)

Our purpose is to solve the equations (4.21) so as to ex-
press t and u in terms of s and v. In order to find u, we
start from the second of these equations,

√
U + u− 1 −

1

s

√
U − u+ 1 =

s

V

√
V + v + 1

−
1

V

√
V − v − 1, (A.1)

which by use of the definitions (4.22) reads

√
U + u− 1−

1

s

√
U − u+ 1 =

√
2 Y (Z − 1). (A.2)

Taking the square of (A.2) and using the definition (4.9)
of U yields

s2 + 1

s2
U +

s2 − 1

s2
(u− 1)− 2u = 2 Y 2 (Z − 1)

2
,

or equivalently

U =
2s2

s2 + 1

[
Y 2 (Z − 1)

2
+ 1
]

+ u− 1. (A.3)

Among the solutions of (A.3) we must select those for
which both sides of (A.2) have the same sign, a condition
expressed by[(

s2 − 1
)
U +

(
s2 + 1

)
(u− 1)

]
(Z − 1) > 0. (A.4)

Using the definitions (4.22), we can check that(
s2 + 1

)
X2 − 1 = Y 2 (Z − 1)2

, (A.5)

so that we can rewrite (A.3) as

U = 2s2X2 + u− 1. (A.6)

Taking now the square of (A.6), we find

u2 − 4X2u+ 4X2
(
1− s2X2

)
= 0, (A.7)

to be supplemented with the new inequality

2s2X2 + u− 1 > 0. (A.8)

The general solution of (A.7) reads

u = 2X2 ± 2XY (Z − 1) , (A.9)

where we used again (A.5). Both roots (A.9) satisfy the
inequality (A.8), since (A.5) implies

2s2X2 + u− 1 = [X ± Y (Z − 1)]
2

+ s2X2.

We thus have

U − u+ 1 = 2s2X2 , U + u− 1 =
u2

2X2
, (A.10)

which allow us to rewrite the conditions (A.4) in the form(
u2 − 4X4

)
(Z − 1) > 0, or equivalently

Y (Z − 1)± 2X > 0. (A.11)

A last inequality remains to be satisfied, namely u > 0,
that is,

X ± Y (Z − 1) > 0. (A.12)

The conditions (A.11) and (A.12) are incompatible for the
lower sign since they then imply X > 2X (remember that
X,Y, Z are positive). We must thus exclude the solution
(A.9) with the minus sign. For the remaining solution,

u = 2X (X − Y + Y Z) , (A.13)

the condition Y (Z − 1) + 2X > 0 results from X +
Y (Z − 1) > 0, and it thus suffices to check the positivity
of u. This is readily done, since X > Y.

The next step consists in determining t from the first
equation (4.21). We first find, from (A.10, A.13),

√
U + u− 1 =

u
√

2X
=
√

2 (X − Y + Y Z) . (A.14)

We then note, from (4.22), that

s

V

√
V + v + 1 =

v

V
√
V − v − 1

=
√

2 Y Z; (A.15)

hence, we find:

t =
2

u
(X − Y ) =

X − Y

X (X − Y + Y Z)
· (A.16)

This solution is positive, but it is admissible only if it is
less than 1, so that s and v should satisfy

(X − Y ) (X − 1) +XY Z > 0. (A.17)

The parameters X,Y, Z can also be used to express
the wavevectors k and β in terms of s and v. Indeed, we
find from (4.10, 4.22) that

κxIm
1

βz
= Y,

Re βz
|Im βz |

=
Z

s
,
|βz|

κ2
x

2

= V, (A.18)

while (A.15) shows that sκxRe (1/βz) = Y Z. We find
also from (A.10, A.13) and (A.14) that, for a vanishing
reflection coefficient,

1

κx
Im kz = sX,

1

κx
Re kz = X − Y + Y Z,

|kz|

κ2
x

2

= U = 1 + 2Y (Z − 1) (X − Y + Y Z) . (A.19)
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These expressions allow us to check that

C =
−B [X (1 + is) + Y (Z − 1)]

(X − Y ) (1 + is)

and

D =
BY (Z + is)

(X − Y ) (1 + is)
(A.20)

sum up to B∗ = −B. They also can be used to derive from
the condition (A.17) some inequalities to be satisfied by
the wavevectors.

A.2. Limiting cases

Let us now discuss the results (A.13, A.16, A.17) in terms
of the variables s and v. We first note that (A.17) obvi-
ously holds for X > 1, that is, for

s2 6 v

4 (v + 1)
3 · (A.21)

On the other hand, although the boundary of (A.17) is a
portion of an algebraic curve of high degree, simple an-
alytic results are available along the curve Z = 1 in the
plane (s, v) , that is,

v =
2s2

1− 3s2
, s <

1
√

3
· (A.22)

We have there V = 2v + 1, and hence

t =
√
s2 + 1− s

√
1− 3s2, u =

2

s2 + 1
, U = 1.

(A.23)

The condition t 6 1 thus yields along the curve (A.22):

s 6
√

24/3 − 22/3

3
' 0.56,

v 6 8
(
1 + 21/3

)
3

+ 25/3 ' 9.2. (A.24)

We now turn to the asymptotic forms of equations
(A.13, A.16, A.17) in the various limiting cases. Near the
axis v � 1, we always find a solution. It is given, for finite
or large s, by

t−1 ≈ (1 + s)−
vs

2
,

u ≈ 2 (1 + s)− v

(
1

s
+ 2 + 2s

)
, (A.25)

and for s either comparable to v or smaller than v, by

t ≈

√
2 V√

(V + 1) (2V − 1)
,

u ≈
(2V − 1) (V + 1)− vs−1

√
2V − 1

V 2
, (A.26)

where V =
√

1 + v2s−2. A cross-over between these two
forms takes place for v � s� 1, in which case:

t−1 ≈ 1 + s−
vs

2
+

v2

8s2
, u ≈ 2

(
1 + s−

v

2s

)
. (A.27)

Thus, for small fixed v, when s increases, t first decreases
as 1− s/4v for s � v, reaches a minimum slightly below
2
3

√
2 ' 0.9428 for s ∼ v/

√
3, then returns to a maximum

1− 3
2 (v/2)

2/3
for s = (v/2)

2/3
and finally decreases down

to zero as s−1 for s → ∞. Likewise, u first decreases as
2 −

√
2s/v down to its minimum 3

2 for s = v/
√

3, then

increases, reaching 2 for s =
√
v/2, and tends to ∞ as 2s

for s→∞.
Near the origin, (A.26) shows that t depends only on

the ratio v/s. When v/s increases, from 0 to
√

3, t =

sin 2θi decreases from 1 to 2
3

√
2; then when v/s increases

from
√

3 to ∞, t increases back to 1. The incidence angle
θi thus remains in the vicinity of π4 for v and s both small.

The correction to (A.26) for v ' s
√

3, v → 0,

t ≈
2
√

2

3
+

2
√

2

9

[
1

32

(v
s
−
√

3
)2

− v

]
,

shows that two level lines with t = 2
3

√
2 start from the

origin s = v = 0 with the same slope
√

3. The quantity u
given by (A.26) also depends near the origin on v/s only ;

it decreases from 2 to 3
2 when v/s increases from 0 to

√
3,

then returns to 2 for v/s → ∞. The correction to (A.26)
for v ' s

√
3, v → 0,

u ≈
3

2
+

1

2

[
1

16

(v
s
−
√

3
)2

+ v

]
,

shows that for values of u slightly larger than 3
2 , the level

lines constitute closed loops which start from the origin
s = v = 0 and return to it.

Near the axis s� 1, we find for v either finite or large,

t ≈ 1 +
s2

2
−

√
s3

2v
−

s

4v
+

s2

4v2
(3v + 1) ,

u ≈ 2−

√
2s

v
· (A.28)

The condition t 6 1 requires that

v 6 vmax (s) ∼
3
2 +
√

2

s
'

2.9

s
, (s� 1) . (A.29)

We thus see that the allowed region is limited by a curve
with the asymptote (A.29), too small values of the screen-
ing length being forbidden for s fixed. If for given s� 1,
v increases, t and u also increase, starting as 1− s/4v and

2 −
√

2s/v, respectively, till v reaches vmax (s) . While t
remains close to 1, u remains close to 2, expressing that
ki
z ∼ κx ∼ kz : both the incidence and the refraction angle,

are close to π
4 in this limit. The complex wavevector β is



R. Balian and J.-J. Niez: Finite screening length and electromagnetic waves 443

nearly normal to the interface since βz/κx ∼
√
−iv/s is

large.
For v � 1, we have just seen that the region 1 �

s >
(

3
2 +
√

2
)
/v is forbidden. Finite values for s are also

forbidden since (A.16) provides, for v � 1 and s finite, t ∼√
1 + s2 > 1. Let us then explore the region v � 1, s� 1.

We then find from (A.13, A.16)

t−1 ≈
s
√
v

(
1 +

3
2 + vs−2

s
√

1 + vs−2

)
,

u ≈
2s

v

(√
1 + vs−2 +

1 + vs−2

s

)
, (A.30)

where we dropped terms of relative order s−2 or v−1. By
expressing that t−1 > 1, we find a parabolic branch

v < vmax (s) ≈ s2 +
5s
√

2
, (s� 1) , (A.31)

for the curve which bounds the allowed region. Unless s is
either sufficiently small or sufficiently large, short values
for the screening length are incompatible with a total ab-
sorption. When s increases in the allowed region, starting
from s =

√
v, t decreases from 1 to 0 while u remains

small. The wavevectors satisfy

kz

κx
∼

s
√
v

+ i

√
1 +

s2

v
,

βz

κx
∼
√
v � 1. (A.32)

Finally, for s � 1 and v � s2, there is always a solu-
tion,

t ≈

√
v + 1

s

(
1−

3v + 2

2s (v + 1)

)
, u ≈

2 (s+ 1)

v + 1
, (A.33)

which interpolates (A.27) and (A.30). Since t is small, the
incidence should then be close to normal or to grazing,
and the equations

kz

κx
∼ s

√
2i

v + 1
,

βz

κx
∼
√
v + 1 (A.34)

show that κx � |kz | while β is real.
Altogether, a solution is available for all points be-

low the curve v = vmax (s) , which has the hyperbolic be-
haviour (A.29) for s → 0 and the parabolic behaviour
(A.31) for s → ∞. This curve passes through the point
(A.24), and has a minimum, found numerically to lie at
s ' 0.696, v ' 8.98; at this point, where t = 1, u '
1.42, we find from (A.18), (A.19) that kz/κx = 0.87+0.57i
and βz/κx ' 3.63−1.78i. The maps of t and u in the plane
(s, v) are shown in Figures 1 and 2; they are consistent
with the above analytic results.

Appendix B: Some properties of Bessel
functions

We gather below a few results that we use in the main
text, Sections 5.2 and 5.3. Their proofs rely on properties

of Bessel functions gathered in reference [10]. The spher-
ical Bessel functions (5.4) are solutions of the differential
equation[

d2

dz2
+

2

z

d

dz
+ 1−

l (l + 1)

z2

]
jl (z) = 0. (B.1)

They behave for z → 0 as

jl (z) ≈
zl

(2l+ 1)!!

(
1−

z2

2 (2l+ 3)

)
, (B.2a)

hl (z) ≈
(2l− 1)!!

zl+1

(
1 +

z2

2 (2l− 1)

)
. (B.2b)

Their Wronskians are

j
′

l (z)hl (z)− jl(z)h
′

l (z) =
1

z2

=
1

2i

[
h
′

l (z)h
(−)
l (z)− hl (z)h

(−)′

l (z)
]
. (B.3)

For l = 1, they reduce to

j1 (z) =
sin z

z2
−

cos z

z
, h1 (z) =

1− iz

z2
eiz. (B.4)

We use in the text some integrals over products of
spherical Bessel functions, namely(

k2 − k∗2
) ∫

r2 |jl (kr)|2 dr

= r2
[
k∗jl (kr) j

′

l (k∗r) − kj
′

l (kr) jl (k
∗r)
]
, (B.5)

(
k2 − k∗2

) ∫ [
l (l + 1) |jl (kr)|

2 +
∣∣∣krj′l ∣∣∣2] dr

= |k|2 r2
[
kjl (kr) j

′

l (k∗r) − k∗j
′

l (kr) jl (k∗r)
]
, (B.6)

∫ [
|jl (kr)|2 + 2Re krj

′

l (kr) jl (k
∗r)
]
dr = r |jl (kr)|2 .

(B.7)

Let us now find a few inequalities satisfied by Bl, Cl
and Dl. From the definition (5.16) of Bl, we obtain, letting
x ≡ κR,

Im Bl =
h
′

l (x)h
(−)
l (x)− hl (x) h

(−)′

l (x)

2ix |hl (x)|2

=
1

x3 |hl (x)|2
, (B.8)

where we used the Wronskian (B.3). Hence Im Bl is posi-
tive. The real part of Bl reads

Re Bl =
1

2x

d

dx

[
lnx2 |hl (x)|2

]
=

1

2x

d

dx

{
lnx

[
J2
l+ 1

2
(x) +N2

l+ 1
2

(x)
]}
, (B.9)
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and it is negative since x
[
J2
ν (x) +N2

ν (x)
]

decreases

monotonically for ν > 1
2 .

The quantity Cl defined by (5.12) is the value for z =
kR of the meromorphic function of z2,

j
′

l (z)

zjl (z)
+

1

z2
,

which has, as only singularities for finite z2, a simple pole
at z = 0 around which it behaves as (l + 1) z−2 + O (1),
and a sequence of simple poles z2 = ξn on the real positive
axis, such that∣∣∣√ξn − nπ − l π

2

∣∣∣ < π

2
, (n > 1) ,

the residues being equal to 2. It tends to zero for z → ±i∞,
and its Mittag–Leffler expansion is therefore

j
′

l (z)

zjl (z)
+

1

z2
=
l + 1

z2
+ 2

∑
n>1

1

z2 − ξn
· (B.10)

Hence, introducing the notations

k̃ ≡ |kR|2 , β̃ ≡ |βR|2 ,

ψ ≡ tg−1s,
(

0 < ψ <
π

2

)
, (B.11)

which imply that

(kR)
2

= k̃eiψ, (iβR)
2

= iβ̃eiψ, (B.12)

we find

Im Cl = −
(l+ 1) sinψ

k̃

−2k̃ sinψ
∑
n>1

1

k̃2 − 2k̃ξn cosψ + ξ2
n

< −
(l+ 1) sinψ

k̃
< 0. (B.13)

Instead of Cl, magnetic multipoles involve the function

zj
′

l (z)

jl (z)
= l + 2

∑
n>1

z2

z2 − ξn
(B.14)

taken at z = kR, which thus satisfies

Im (kR)
2
Cl = −2 sinψ

∑
n>1

ξn

k̃2 − 2k̃ξn cosψ + ξ2
n

< 0.

(B.15)

The quantity Dl defined by (5.13) can be written by
use of the notations (B.12) as

Dl = −
l (l + 1) sβ̃

k̃

jl (z)

z3j
′

l (z)
, (B.16)

where z = iβR. From (B.14) and (B.12) we find

Im
z3j

′

l (z)

jl (z)
= Im

lz2 + 2
∑
n>1

z4

z2 − ξn


= lβ̃ cosψ

+2β̃2
∑
n>1

β̃ cosψ + ξn sin 2ψ

β̃2 + 2β̃ξn sinψ + ξ2
n

,

and hence

Im Dl > 0. (B.17)

An alternative representation ofDl is obtained by writ-
ing its Mittag-Leffler expansion. From (B.15) we see that

j
′

l (z) cannot vanish outside the real and imaginary axes,
and the positivity of (B.14) on the imaginary axis then
implies that all the poles of (B.16) lie on the real axis, at
z = 0, and at the extrema z = ±

√
ζn of jl (z) , which are

intertwined with its zeroes ξn:

l (l + 1) < ζ1 < ξ1 < ζ2 < ...

At its simple poles z = ±
√
ζn the residue of jl (z) /z3j

′

l (z)
is found from (B.1) to be

jl
(√
ζn
)

ζ
3/2
n j

′′

l

(√
ζn
) =

1
√
ζn [l (l + 1)− ζn]

;

around z = 0, this function behaves as 1/lz2 +O (1) , and
it tends to zero for z → ±i∞. Hence it is expanded as

jl (z)

z3j
′

l (z)
=

1

lz2
− 2

∑
n>1

1

ζn − l (l + 1)

1

z2 − ζn
, (B.18)

which provides for (B.16), using (B.11, B.12):

Re Dl =
(l + 1) sin2 ψ

k̃ cosψ
−

2β̃tgψ

k̃

×
∑
n>1

l (l + 1)

ζn − l (l + 1)

β̃ sinψ + ζn

β̃2 + 2β̃ζn sinψ + ζ2
n

, (B.19)

Im Dl =
(l+ 1) sinψ

k̃
−

2β̃2 sinψ

k̃

×
∑
n>1

l (l + 1)

ζn − l (l + 1)

1

β̃2 + 2β̃ζn sinψ + ζ2
n

. (B.20)

As a consequence of (B.13) and (B.20) we have

Im Dl <
(l + 1) sinψ

k̃2
, Im (Cl +Dl) < 0. (B.21)

We can also check from (B.20) that Im Dl > 0. To this
aim, we use the sum rule

1

l
= 2

∑
n>1

1

ζn − l (l + 1)
, (B.22)
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which expresses that (B.18) tends to zero faster than z−2

for z → ±i∞; we thus rewrite (B.20) as

Im Dl =
2 sinψ

k̃

×
∑
n>1

l (l + 1)

ζn − l (l + 1)

2β̃ζn sinψ + ζ2
n

β̃2 + 2β̃ζn sinψ + ζ2
n

, (B.23)

which is obviously positive.
Finally, we can also write bounds on

(kR)
2
Dl = il (l + 1) s

jl (z)

zj
′

l (z)
, (B.24)

where z = iβR. From (B.14), we find, using z2 = iβ̃eiψ,[
(kR)

2
Dl

]−1

= −
1

l (l + 1) s

×

il + 2β̃
∑
n>1

ξn cosψ + i
(
β̃ + ξn sinψ

)
β̃2 + 2β̃ξn sinψ + ξ2

n

 , (B.25)

and hence

Re
[
(kR)

2
Dl

]
< 0, Im

[
(kR)

2
Dl

]
> 0. (B.26)

From (B.18) we also find

(kR)
2
Dl = l (l + 1) s

×

 i

l
− 2β̃

∑
n

1

ζn − l (l + 1)

ζn cosψ + i
(
β̃ + ζn sinψ

)
β̃2 + 2β̃ζn sinψ + ζ2

n

 ,
and hence

Im
[
(kR)

2
Dl

]
< (l + 1) s. (B.27)

Appendix C: Dissipation in a slab

C.1. Some inequalities

We gather here a few inequalities satisfied by the vari-
ous terms of the S -matrix (6.12). We have already seen
(Eqs.(3.25)) that C and D satisfy

−
3π

4
< argC < D, 0 < argD <

3π

4
,

−
π

4
< arg (−DC∗) <

π

2
. (C.1)

We also readily find

Im tg
1

2
kzl > 0, Re tanh

1

2
βzl > 0. (C.2)

In order to discuss the signs of the various terms in
(6.19), we note that C+ has the form

C+ =
w

2z2

√
z2 −

1

4
w2 cotg

√
z2 −

1

4
w2,

where we used the definition (6.11, 6.13) of C+, and where
we set z = 1

2kl, w = κxl. We proceed as for Cl in Appendix
B, expanding this expression in terms of its poles z2 = 0
and z2 = ξn ≡ n2π2 + 1

4w
2 (n > 1) . We find

C+ =
w

2z2
+
w
(
z2 − 1

4w
2
)

z2

∑
n>1

1

z2 − ξn

=
1

4z2
w2 coth

1

2
w + w

∑
n>1

n2π2

ξn

1

z2 − ξn
, (C.3)

and hence, introducing as in (B.11) the notations k̃ ≡
1
4 |kl|

2
, ψ ≡ tg−1s, so that z2 = k̃eiψ,

Im C+ = −
1

4k̃
w2 coth

1

2
w sinψ − wk̃ sinψ

×
∑
n>1

n2π2

ξn

1

k̃2 − 2k̃ξn cosψ + ξ2
n

· (C.4)

This yields the inequality

Im C+ < −
sinψ w2 coth 1

2w

4k̃
< 0. (C.5)

Likewise, C− is expanded as

C− = −
1

2
wz−2

√
z2 −

1

4
w2 tg

√
z2 −

1

4
w2

=
1

4z2
w2 tanh

1

2
w

+w
∑
n>1

(
n− 1

2

)2
π2

ζn

1

z2 − ζn
, (C.6)

where we introduced the notation ζn ≡
(
n− 1

2

)2
π2+ 1

4w
2,

and its imaginary part satisfies

Im C− < −
w2 tanh 1

2w sinψ

4k̃
< 0. (C.7)

The second term of (6.19) involves D+, which we
rewrite as we did for Dl in (B.16) in the form

D+ =
w3β̃tgψ

8k̃

cotg
√
z2 − 1

4w
2

z2
√
z2 − 1

4w
2
, (C.8)
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where z ≡ i
2βl and β̃ ≡ 1

4 |βl|
2
, so that z2 = iβ̃eiψ. The

pole expansion of D+ analogous to (C.3) reads

D+ = −
β̃tgψ

4k̃z2
w2 coth

1

2
w

+
β̃tgψ w3

8k̃

[
1

ξ0 (z2 − ξ0)

+2
∑
n>1

1

ξn (z2 − ξn)

 , (C.9)

whence we find, using z2 = iβ̃eiψ,

Im D+ <
sinψ w2 coth 1

2w

4k̃
,

Re D+ <
sin2 ψ w2 coth 1

2w

4k̃ cosψ
· (C.10)

Likewise, from

D− = −
β̃tgψw3

8k̃

tg
√
z2 − 1

4w
2

z2
√
z2 − 1

4w
2

= −
β̃tgψ

4k̃z2
w2 tanh

1

2
w

+
β̃tgψw3

4k̃

∑
n>1

1

ζn (z2 − ζn)
, (C.11)

we obtain

Im D− <
sinψ w2 tanh 1

2w

4k̃
,

Re D− <
sin2 ψ w2 tanh 1

2w

4k̃ cosψ
· (C.12)

Finally, again as we did to find the sign of Im Dl in Ap-
pendix B, we can use the pole expansion of either (D±)

−1

or z2D±. For instance the second method provides D+ as
a sum of terms (for n > 0) proportional to

1

z2 (z2 − ξn)
= (C.13)(

ξn sinψ − β̃ cos 2ψ
)

+ i
(
ξn cosψ + β̃ sin 2ψ

)
β̃
(
β̃2 + 2β̃ξn sinψ + ξ2

n

) ,

and similarly for D− where ξn is changed into ζn (n > 1) .
Hence, we find

Im D+ > 0, Im D− > 0. (C.14)

Similar calculations using the above formulae also pro-
vide the inequalities

Im
(
C±k

2
)
< 0, Im

(
D±k

2
)
> 0, Re

(
D±k

2
)
< 0.

(C.15)

C.2. Explicit approximate conditions for complete
absorption

We start from the equations (6.35) and (6.42) which
express that the wave is completely absorbed, that is,
R = T = 0 = S±, in terms of the dimensionless variables
s, t, u, v, w defined by (6.32).

We have found the solution (6.48, 6.49) of these cou-
pled equations in the limit as s → ∞. We saw that
in this limit the quantities Im kzl and Re βzl, of order
χl ∼ w

√
s ∼ 2nπ − π

4 were rather large, so that
∣∣e2ikzl

∣∣
and

∣∣e−2βzl
∣∣ were at most equal to 1.7 × 10−5. We were

therefore entitled to replace sin kzl by i
2e−ikzl and sinhβzl

by 1
2eβzl in (6.35), which then simplifies into

i
√
u (1 + is)− 1 +

√
v (1− is−1) + 1

=
1

w

[
2niπ + ln s− ln

√
u (1 + is)− 1

− ln
√
v (1− is−1) + 1

]
, (C.16)

and to replace cotg kzl by −i and cothβzl by 1 in (6.42),
which simplies into√

u (1 + is)− 1−
s√

v (1− is−1) + 1
=
tu

2
(1 + is) .

(C.17)

The equations (C.16) and (C.17) might alternatively be
found from the set (6.43), which provide within the same
approximation the equation C + D + B = 0, identical
to (C.17), and hence the equation e(ikz+βz)l = −D/C,
identical to (C.16).

Provided
∣∣e2ikzl

∣∣ and
∣∣e−2βzl

∣∣ remain negligible, we can
then replace the exact equations (6.35) and (6.42) for com-
plete absorption by (C.16) and (C.17). The latter equation
is the same as the one, (4.20), that we solved in Section 4.2
and Appendix A. We explicitly expressed t and u in terms
of s and v by means of equations (4.23, 4.24), where X,Y
and Z are functions of s and v defined by (4.9, 4.22). In-
serting the expression thus found for u and hence for U
into (C.16), and separating the real and imaginary parts,
we find two real equations relating s, v and w:

√
U − u+ 1−

√
V + v + 1 =

1

w
√

2
ln
UV

s2
, (C.18)

√
U + u− 1−

√
V − v − 1 =

√
2

w
[2nπ

−
1

2
tg−1 us

u− 1
+

1

2
tg−1 v

s (v + 1)

]
· (C.19)

We can eliminate w between (C.18) and (C.19), in the
form:
√
U − u+ 1−

√
V + v + 1

√
U + u− 1−

√
V − v − 1

=
1

2
ln
UV

s2

[
2nπ −

1

2
tg−1uv

(
s2 − 1

)
+ us2 + v

s (2uv + u− v − 1)

]−1

.

(C.20)
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Equation (C.20), where u is replaced by its expression
(4.24), is the relation between s and v which should be sat-
isfied to ensure complete absorption within the considered
approximation. More explicitly, we rewrite the left-hand
side of (C.20) by using (A.10, A.14, A.15), then replacing
X,Y, Z by their expressions (4.22), and simplifying the
ratio by means of (4.29); this yields:

√
U − u+ 1−

√
V + v + 1

√
U + u− 1−

√
V − v − 1

=

√
2sX −

√
V + v + 1

√
2 (X − Y + Y Z)−

√
V − v − 1

=
s
√
V + v + 1 + 2v2s−2 − V

√
V + v + 1

√
V + v + 1 + 2v2s−2 + s (V − v − vs−2)

√
V + v + 1

=
s
√

2V − 2v − 1− V
√

2V − 2v − 1 + s (V − v − vs−2)
·

Multiplying then the numerator and denominator by
s
√

2V − 2v − 1+V, we obtain the relation (C.20) between
s and v in the form

2s2V

1 + s2
−

(
2v + 1 +

v2

s2

)

=

[
sV

1 + s2
+
V − v

2

(√
2V − 2v − 1−

v

s

)]
ln
UV

s2

2nπ −
1

2
tg−1uv

(
s2 − 1

)
+ us2 + v

s (2uv + u− v − 1)

,

(C.21)

where u and U are functions of s and v given by (4.22,
4.24) and (A.19).

Finally the thickness l = w/κx is expressed in the
considered approximation

∣∣e2ikzl
∣∣ � 1,

∣∣e−2βzl
∣∣ � 1 by

(C.19), which reads

w =
2nπ − 1

2 tg−1 uv(s
2−1)+us2+v

s(2uv+u−v−1)

X + Y (Z − 1− V )
(C.22)

in terms of the functions V,X, Y, Z of v and s defined by
(4.22). Altogether, for given s, the parameters u and v
for which the wave is completely absorbed are given by
(4.22) and (C.21), and the parameters t and w by (4.23)
and (C.22).

Let us work out these equations for s � 1. We first
check that for s → ∞, they are satisfied for the solution
(6.48, 6.49). Indeed, for s → ∞, with u and v/s finite,
we have U ∼ us, V ≈ v + 1 + 1

2vs
−2,X ∼ v−1/2, Y ∼

1
2v
−1/2s−1, Z ∼ 2s2, and hence from (4.24) uv ∼ 2s;

the argument of tg−1 in (C.21) and (C.22) is large as
us/ (2u− 1) , and the bracket on the right-hand side of
(C.21) is 1

2

(
1 + vs−1

)
while the left-hand side is 1−v2s−2,

so that we recover from (C.21) the expressions (6.48) for
u and v, with η given by (6.49); the resulting values (4.23)

and (C.22) for t and w are also seen to be given by (6.48,
6.49). We can now find the corrections of relative order
s−1 and s−2 for u and v by expanding (4.22, 4.24) and
iterating (C.21). Since η is small, at most equal to 0.063,
we systematically regard it as being of order s−1. Noting
that s and v have the same order, we thus find

X ≈
1

√
v + 1

(
1 +

v

2s2
−

1

s2

)
,

Y Z ≈
s

√
v + 1

(
1−

3

8s2

)
,

and hence

u ≈
2s

v

(
1−

1

v
+

1

s
+

v

2s2
−

11

8s2

)
, (C.23)

which after insertion into (C.21) yields:

1−
v2

s2
−

v

s2
−

1

s2
≈(

1 +
v

s
+

2

s
+

v

s2
−

v2

2s3
−

3

8s2

)
ln

[
2

(
1 +

1

s
+

v

2s2
−

1

4s2

)]

4nπ −
π

2
+ tg−1

2−
v

2s
−

1

v
+

3

2s
+

v

s2

s+ 1 +
v

2s

·

Iteration, starting from v ' s, yields for each branch n =
1, n = 2, ... the asymptotic expansion for the solution of
R = T = 0:

vn (s) ≈ s (1− η) −

(
1

2
+

3

4ν
+ η −

η

ν

)
−

1

s

(
3

8
−

1

16ν
−

3

4ν2

)
, (C.24)

where we introduced the notations

ν = 2nπ −
π

4
, η =

1

2ν
ln 2. (C.25)

Numerically, for n = 1 and n = 2, (C.24) provides:

v1 (s) ≈ 0.94s− 0.69−
0.34

s
,

v2 (s) ≈ 0.97s− 0.59−
0.36

s
· (C.26)

From (C.23) we obtain the asymptotic expansion of un (s):

un (s) ≈ 2

[
1

1− η
+

1

s

(
1 +

3

4ν
+ η +

η

2ν

)
−

1

s2

(
5

4
+

1

16ν
+

3

16ν2

)]
, (C.27)

that is, numerically,

u1 (s) ≈ 2.13 +
2.41

s
−

2.54

s2
,

u2 (s) ≈ 2.06 +
2.19

s
−

2.51

s2
· (C.28)
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The expansions of tn (s) and wn (s) , drawn from (4.23)
and (C.22), are up to first order in s−1:

tn (s) ≈
1
√
s

[
1−

η

2
−

1

s

(
5

4
+

3

8ν

)]
, (C.29)

t1 (s) ≈
1
√
s

(
0.97−

1.32

s

)
,

t2 (s) ≈
1
√
s

(
0.99−

1.28

s

)
, (C.30)

wn (s) ≈
ν
√
s

[
1−

η

2
−

1

s

(
1

4
−

3

8ν

)]
, (C.31)

w1 (s) ≈
1
√
s

(
5.32−

1.0

s

)
,

w2 (s) ≈
1
√
s

(
11.61−

2.57

s

)
· (C.32)

We obtain therefrom the deviations to the simple expres-
sions (6.51) for the wavevectors, where χ ≡ κx

√
s:

kz ≈ χ

[
(1 + i)

(
1 +

η

2
+

3

16sν

)
+

1

2s

]
≈
ν

l
(1 + i)

(
1 +

9

16sν
−

i

4s

)
, (C.33)

βz ≈ χ

[
1−

η

2
+

3

4sν
+

1− 2i

4s

]
≈
ν

l

(
1− η −

3

8sν
−

i

2s

)
. (C.34)

The extrapolation of these expansions towards
smaller values of s suggests that the curves tn (s) ,
un (s) , vn (s) , wn (s) can be continued until vn (s) van-
ishes. Indeed, the allowed domain for the parameters
s, t, u, v, w is the region where they are positive and t 6 1;
when s decreases, v also decreases while t, u and w in-
crease, but these quantities t, u, v are not expected to
reach the border of their allowed domain before v van-
ishes. Actually, the curves vn (s) given by (C.24) lie below
the line v = s− 1

2 , and the maps of Figures 1 and 2 show

that in this region t remains smaller than 1
2 and u smaller

than 4.
Let us therefore explore the region v ' 0. We still

make the approximations
∣∣e2ikzl

∣∣ � 1,
∣∣e−2βzl

∣∣ � 1, to
be checked later. Up to first order in v, we have V ≈
1 + v, and equations (4.22) provide X ≈ 1 − 1

2v, Y ∼
v
2s , Y Z ≈ s

(
1− 1

2v
)
. Hence, the expansions of (4.23, 4.24)

and (A.19) read:

t ≈ (s+ 1)−1 +
1

2
vs (s+ 1)−2

,

u ≈ 2 (s+ 1)− v
(
2s+ 2 + s−1

)
,

U ≈ 2s2 + 2s+ 1− v
(
2s2 + 2s+ 2 + s−1

)
. (C.35)

The value sn of s such that vn (s) vanishes is then given

by (C.21) where v is replaced by 0, u by 2 (sn + 1) and U
by 2s2

n + 2sn + 1, that is:

sn − 1 =
sn + 1

2

ln
[
s−2
n

(
2s2
n + 2sn + 1

)]
2nπ − tg−1 sn

sn+1

· (C.36)

This provides:

s1 ' 1.28 , s2 ' 1.13. (C.37)

Each curve vn (s) , which ends up as (C.24) for large s, thus
starts from the point sn, 0. Its initial slope is obtained by
inserting the expansions (C.35) into (C.21), which yields

s− 1−
2v

s+ 1
≈
s+ 1 + v

(
1− s−1

)
2

×
ln s−2

[(
2s2 + 2s+ 1

)
− v

(
1 + s−1

)]
2nπ −

1

2
tg−1 2s2 (s+ 1)− v (3s+ 1)

s (2s+ 1) + v (2s2 + s− 1)

,

where the denominator can be replaced by:

2nπ − tg−1

[
s

s+ 1
−
v
(
2s2 + s+ 1

)
2s (s+ 1)

2

]
.

Chasing now this denominator, expanding up to first order
in s− sn and in v, and using (C.36), we obtain the slope
through

(
s2
n + 1

) vn (s)

s− sn
→ 2sn + (C.38)

(sn + 1)
2

(2sn + 1)[
s2
n + (sn + 1)

2
](

2nπ − tg−1 sn

sn + 1

)
− sn (sn + 1)

·

Numerically, (C.37) and (C.38) provide

v1 (s) ∼ 1.16 (s− s1) , v2 (s) ∼ 1.09 (s− s2) , (C.39)

and hence, using (C.35),

u1 (s) ≈ 4.56− 4.21 (s− s1) ,

u2 (s) ≈ 4.27− 3.60 (s− s2) , (C.40)

t1 (s) ≈ 0.44− 0.05 (s− s1) ,

t2 (s) ≈ 0.47− 0.08 (s− s2) . (C.41)

The expansion of (C.22) reads



R. Balian and J.-J. Niez: Finite screening length and electromagnetic waves 449

w ≈

2nπ − tg−1 sn

sn + 1
+

1

s2
n + (sn + 1)2

[
v
(
2s2
n + sn + 1

)
2sn

− (s− sn)

]
1 + sn + (s− sn)−

1

2
v
(
s+ 1 + 2s−1) , (C.42)

or numerically, from (C.39)

w1 (s) ≈ 2.53 + 1.46 (s− s1) ,

w2 (s) ≈ 5.66 + 3.07 (s− s2) . (C.43)

Finally, the expansions around v = 0 of the wavevec-
tors corresponding to R = T = 0 are given either by (6.33)
and (C.35), or by (4.10) and (A.10), as

kzl ≈ w

[
(s+ 1 + is)

(
1−

1

2
v

)
−

1

2
vs−1

]
,

βzl ≈ w

[
1 +

1

2
v
(
1− is−1

)]
, (C.44)

which yields numerically, using (C.39) and (C.43),

(Re kzl)1 ≈ 5.77 + 1.37 (s− s1) ,

(Re kzl)2 ≈ 12.08 + 2.93 (s− s2) , (C.45)

(Im kzl)1 ≈ 3.24 + 2.52 (s− s1) ,

(Im kzl)2 ≈ 6.42 + 5.65 (s− s2) , (C.46)

(Re βzl)1 ≈ 2.53 + 2.93 (s− s1) ,

(Re βzl)2 ≈ 5.66 + 6.15 (s− s2) , (C.47)

(Im βzl)1 ≈ −1.15 (s− s1) ,

(Im βzl)2 ≈ −2.72 (s− s2) . (C.48)

Together with the asymptotic expressions (C.24–C.34)
for large s, equations (C.39–C.48) indicate that when
s varies from sn to ∞, vn (s) increases nearly linearly,
un (s) decreases from 2 (1 + sn) to 2, tn (s) decreases from

(sn + 1)
−1

to 0, as s−1/2, while wn (s) first increases be-
fore it reaches a maximum then decreases proportionally
to s−1/2. The values of Re kzl, Im kzl and Re βzl, which
all lie for large s close to ν, that is, to 5.49 for n = 1 and
11.75 for n = 2 are according to (C.44–C.46) significantly
different from one another for finite s. Moreover for n = 1

and s = s1 = 1.28, the exponentials∣∣e2ikzl
∣∣ ' 1.5× 10−3,

∣∣e−2βzl
∣∣ ' 6.3× 10−3 (C.49)

are no longer as small as for large s. However our present
approximation which relies on equations (C.16, C.17) in-
stead of (6.35, 6.42) remains justified, except maybe for
the last figure in the above numerical results. This is con-
firmed by the direct numerical solution of (6.35, 6.42) rep-
resented by Figures 5 and 6.

We have not been able to prove that the branches stud-
ied above are the only solutions of equations (6.35, 6.42)
which express that R = T = 0, but this seems likely. In
particular, we have seen in Section 6.4 that small values
of s are precluded, even for the cancellation of T alone.
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